Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/manitadayon/tsBNgen
https://github.com/manitadayon/tsBNgen
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/manitadayon/tsBNgen
- Owner: manitadayon
- License: mit
- Created: 2020-08-27T21:52:13.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-10-22T05:42:08.000Z (about 1 year ago)
- Last Synced: 2024-11-08T04:50:02.509Z (2 months ago)
- Language: Python
- Size: 173 KB
- Stars: 59
- Watchers: 2
- Forks: 10
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: License.txt
Awesome Lists containing this project
- awesome-data-synthesis - tsBNgen - - [Paper](https://arxiv.org/pdf/2009.04595.pdf) (Data-driven methods / Time Series)
README
![GitHub](https://img.shields.io/github/license/manitadayon/tsBNgen) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tsBNgen) ![GitHub User's stars](https://img.shields.io/github/stars/manitadayon?style=flat-square) ![GitHub forks](https://img.shields.io/github/forks/manitadayon/tsBNgen?logo=GitHub)
![PyPI](https://img.shields.io/pypi/v/tsBNgen)## If you would like to buy me a coffee
**tsBNgen: A Python Library to Generate Time Series Data Based on an Arbitrary Bayesian Network Structure**
[Description](#Description)
[Citation](#Citaton)
[Features](#Features)
[Instruction](#Instruction)
[License](#License)
----
### **Description**
#### tsBNgen is a Python package to generate time series data based on an arbitrary Bayesian Network Structures.
---
### **Citation**#### If you find this package useful or if you use it in your research or work please consider citing it as follows:
```
@article{tadayon2020tsbngen,
title={tsBNgen: A Python Library to Generate Time Series Data from an Arbitrary Dynamic Bayesian Network Structure},
author={Tadayon, Manie and Pottie, Greg},
journal={arXiv preprint arXiv:2009.04595},
year={2020}
}
```
----
### **Features**- It handles discrete nodes, continous nodes and hybrid (Mixture of discrete and continuous) network.
- It uses multinomila distribution for the discrete nodes and Gaussian distribution for the continuous nodes.
- It handles arbitrary Bayesian network structure.
- It supports arbitrary loopback values.
- The code can be modified easily to handle arbitrary static and temporal structures.
---### **Instruction**
To run this code either clone this repo or use the package distribution in PyPI using the following commands:
```python
pip install tsBNgen
```Then Run through the set of examples in
> **Time_Series_Generation_Examples.ipynb**For more information on how to use the package please visit the following:
1. Watch my Youtube tutorial (I go over the package)
Watch the videos
3. Original paper
4. Documentation in PDF available in this repository.### **License**
This software is released under the MIT liecense.