An open API service indexing awesome lists of open source software.

https://github.com/mapbox/snuggs

Snuggs are s-expressions for Numpy
https://github.com/mapbox/snuggs

imagery pxm satellite

Last synced: 3 months ago
JSON representation

Snuggs are s-expressions for Numpy

Awesome Lists containing this project

README

          

======
snuggs
======

.. image:: https://travis-ci.org/mapbox/snuggs.svg?branch=master
:target: https://travis-ci.org/mapbox/snuggs

.. image:: https://coveralls.io/repos/mapbox/snuggs/badge.svg
:target: https://coveralls.io/r/mapbox/snuggs

Snuggs are s-expressions for Numpy

.. code-block:: python

>>> snuggs.eval("(+ (asarray 1 1) (asarray 2 2))")
array([3, 3])

Syntax
======

Snuggs wraps Numpy in expressions with the following syntax:

.. code-block::

expression = "(" (operator | function) *arg ")"
arg = expression | name | number | string

Examples
========

Addition of two numbers
-----------------------

.. code-block:: python

import snuggs
snuggs.eval('(+ 1 2)')
# 3

Multiplication of a number and an array
---------------------------------------

Arrays can be created using ``asarray``.

.. code-block:: python

snuggs.eval("(* 3.5 (asarray 1 1))")
# array([ 3.5, 3.5])

Evaluation context
------------------

Expressions can also refer by name to arrays in a local context.

.. code-block:: python

snuggs.eval("(+ (asarray 1 1) b)", b=np.array([2, 2]))
# array([3, 3])

This local context may be provided using keyword arguments (e.g.,
``b=np.array([2, 2])``), or by passing a dictionary that stores
the keys and associated array values. Passing a dictionary, specifically
an ``OrderedDict``, is important when using a function or operator that
references the order in which values have been provided. For example,
the ``read`` function will lookup the `i-th` value passed:

.. code-block:: python

ctx = OrderedDict((
('a', np.array([5, 5])),
('b', np.array([2, 2]))
))
snuggs.eval("(- (read 1) (read 2))", ctx)
# array([3, 3])

Functions and operators
=======================

Arithmetic (``* + / -``) and logical (``< <= == != >= > & |``) operators are
available. Members of the ``numpy`` module such as ``asarray()``, ``mean()``,
and ``where()`` are also available.

.. code-block:: python

snuggs.eval("(mean (asarray 1 2 4))")
# 2.3333333333333335

.. code-block:: python

snuggs.eval("(where (& tt tf) 1 0)",
tt=numpy.array([True, True]),
tf=numpy.array([True, False]))
# array([1, 0])

Higher-order functions
======================

New in snuggs 1.1 are higher-order functions ``map`` and ``partial``.

.. code-block:: python

snuggs.eval("((partial * 2) 2)")
# 4

snuggs.eval('(asarray (map (partial * 2) (asarray 1 2 3)))')
# array([2, 4, 6])

Performance notes
=================

Snuggs makes simple calculator programs possible. None of the optimizations
of, e.g., `numexpr `__ (multithreading,
elimination of temporary data, etc) are currently available.

If you're looking to combine Numpy with a more complete Lisp, see
`Hy `__:

.. code-block:: clojure

=> (import numpy)
=> (* 2 (.asarray numpy [1 2 3]))
array([2, 4, 6])