https://github.com/mardavsj/machine-learning-algorithms
It consists of basic concepts of Machine-Learning with its algorithms.
https://github.com/mardavsj/machine-learning-algorithms
algorithms machine-learning python reinforcement-learning-algorithms supervised-learning-algorithms unsupervised-learning-algorithms
Last synced: 2 months ago
JSON representation
It consists of basic concepts of Machine-Learning with its algorithms.
- Host: GitHub
- URL: https://github.com/mardavsj/machine-learning-algorithms
- Owner: mardavsj
- License: mit
- Created: 2023-03-01T13:38:28.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-03-07T17:07:04.000Z (over 1 year ago)
- Last Synced: 2024-03-07T18:27:33.846Z (over 1 year ago)
- Topics: algorithms, machine-learning, python, reinforcement-learning-algorithms, supervised-learning-algorithms, unsupervised-learning-algorithms
- Language: Python
- Homepage:
- Size: 46.9 KB
- Stars: 4
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Shortcuts !
### Guide to find your favorite algorithm ✌️- ### ALGORITHMS :
- #### [SUPERVISED](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised) :
- #### [Classification](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Classification) :
- [Decision Tree](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Classification/decision-tree) (Categorical variable, Continous variable)
- [KNN](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Classification/KNN)
- [Logistic Regression](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Classification/logistic-regression) (Binary, Multinomial, Ordinal)
- [Naive Bayes](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Classification/naive-bayes)
- #### [Regression](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Regression) :
- [Linear Regression](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Regression/linear-regression) (Single/Simple, Multi/Multiple)
- [Polynomial Regression](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Regression/polynomial-regression)
- [Ridge Regression](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Supervised/Regression/ridge-regression)
- #### [UNSUPERVISED](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised) :
- #### [Clustering](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised/Clustering) :
- [K-means](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised/Clustering/K-means)
- [Mean Shift](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised/Clustering/Mean%20Shift)
- #### [Pattern Search](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised/Pattern%20Search) :
- [Euclat](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised/Pattern%20Search/Euclat)
- [FP Growth](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Unsupervised/Pattern%20Search/FP%20Growth)
- #### [REINFORCEMENT](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Reinforcement) :
- #### [Deep Q Network](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Reinforcement/Deep%20Q%20Network)
- #### [Genetic Algorithm](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Reinforcement/Genetic%20Algorithm)
- #### [Q Learning](https://github.com/mardavsj/Machine-Learning-Algorithms/tree/main/Algorithms/Reinforcement/Q%20Learning)### Happy coding !
# How to contribute?
1. Fork the repository
2. Do the desired changes (add/delete/modify)
3. Make a pull request## Don't forget to show your love by ⭐ing this repository.