Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/marieroald/condat_tv

Python wrapper for the fast TV denoising algorithm by Laurent Condat
https://github.com/marieroald/condat_tv

compressive-sensing denoising regularization signal-processing statistics total-variation

Last synced: 28 days ago
JSON representation

Python wrapper for the fast TV denoising algorithm by Laurent Condat

Awesome Lists containing this project

README

        

# CondatTV

Cython wrapper for the efficient TV denoising algorithm by [Laurent Condat](https://lcondat.github.io/). This wrapper wraps Condats C implementation of the algorithm for use with NumPy.

The algorithm this code uses is the improved fast total variation algorithm.
The original C and MATLAB code is available on the [software page](https://lcondat.github.io/software.html) of Laurent Condat's [webpage](https://lcondat.github.io/).

## Installation instructions

To install these bindings, you should have a C-compiler installed on your system. Make sure you have [NumPy](https://numpy.org/install/) and [Cython](https://cython.readthedocs.io/en/latest/src/quickstart/install.html) installed beforehand (both packages come with Anaconda by default) and write

```
pip install condat-tv
```

in your terminal window. In case that does not work, you can install it directly from github by running the command

```
pip install git+https://github.com/yngvem/condat_tv.git
```

## Example of denoising with total variation minimization

The following example is inspired by the experiments on syntetic data in [[1]](#[1])

```python
import condat_tv
import numpy as np
import matplotlib.pyplot as plt
```

### Generate syntetic data

```python
np.random.seed(0)

N = 500 # number of samples

# Generate a sparse "derivative" vector
signal_derivative = np.random.standard_normal(N)*4
for k in range(N):
signal_derivative[k] = signal_derivative[k]*(np.random.uniform(0,1)>0.95)

# Integrate the sparse derivative vector to obtain a piecewise constant vector
signal = np.cumsum(signal_derivative)

# Add noise
noisy_signal = signal + np.random.standard_normal(signal.shape)
```

### Plot the syntetic data

```python
plt.figure(figsize=(12, 4))

plt.plot(signal, label="Signal")
plt.plot(noisy_signal, label="Noisy signal")

plt.xlim(0, N)
plt.legend()
plt.title("Plot showing the signal with and without the added noies")
plt.show()
```

![png](readme_images/output_5_0.png)

### Denoise and visualize the results

```python
plt.figure(figsize=(12, 4))
plt.plot(signal, label="Signal")

for reg_strength in [0.5, 2, 8, 32]:
# Denoise the signal with total variation minimization
denoised_signal = condat_tv.tv_denoise(noisy_signal, reg_strength)

# Visualize denoised signal
plt.plot(denoised_signal, label=f"Reg strength: {reg_strength}")

# Calculate and print RMSE
RMSE = np.linalg.norm(denoised_signal-signal)/np.sqrt(N)
print(f"Regularisation strength: {reg_strength:.1e}, RMSE: {RMSE:.2e}")

plt.xlim(0, N)
plt.legend(ncol=5)
plt.title("Visualisation of denoising results for different regularisation strengths")
plt.show()
```

Regularisation strength: 5.0e-01, RMSE: 5.70e-01
Regularisation strength: 2.0e+00, RMSE: 3.56e-01
Regularisation strength: 8.0e+00, RMSE: 5.89e-01
Regularisation strength: 3.2e+01, RMSE: 1.52e+00

![png](readme_images/output_7_1.png)

# References


[1] Condat L. A direct algorithm for 1-D total variation denoising. IEEE Signal Processing Letters. 2013 Aug 15;20(11):1054-7. (link)