Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/marktheo/bike-sharing-demand

Jupyter Notebook - Predicting bike rental numbers based on climate and temporal data
https://github.com/marktheo/bike-sharing-demand

decision-tree-classifier decision-tree-regression jupyter-notebook machine-learning scikit-learn

Last synced: 1 day ago
JSON representation

Jupyter Notebook - Predicting bike rental numbers based on climate and temporal data

Awesome Lists containing this project

README

        

# Bike Sharing Demand

> ## Description
> [EN]: The main purpose of this chalenge is to predict the total count of bikes rented at each hour based on the test dataset, using the information given at each especific time period.
>


> [PT]: O principal objetivo desse desafio é prever o número total de bikes alugadas a cada hora baseado em um conjunto de dados teste, usando as informações correspondentes ao devido horário.






> ## Data Fields

> Field | DataType | Sample | Description
> ----- | ----- | ----- | ----- |
> Datetime | date | yyyy-mm-dd hh | Horário
> Season | int | 1 - 4 | Estações do Ano
> Holiday | bool | 0 or 1 | Feriado
> Working Day | bool | 0 or 1 | Dia Útil
> Weather | int | 1 - 4 | Clima
> Temp | float | 36.50 | Temperatura
> Atemp | float | 39.75 | Sensação Térmica
> Humidity | int | 65 | Umidade do Ar
> Windspeed | float | 6.00 | Velocidade do Vento
> Casual | int | 5 | Nº Aluguéis s/ Registro
> Registered | int | 15 | Nº Aluguéis c/ Registro
> Count | int | 20 | Nº Total de Aluguéis


> - **Season**
> - 1 - Spring [Primavera]
> - 2 - Summer [Verão]
> - 3 - Fall [Outono]
> - 4 - Winter [Inverno]
>


> - **Weather**
> - 1 - Clean [Limpo]
> - 2 - Cloudy [Nublado]
> - 3 - Rainy [Chuvoso]
> - 4 - Stormy [Tempestuoso]