Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/marpogaus/dvc-stage

Stop programming common dvc stages. Configure them.
https://github.com/marpogaus/dvc-stage

ai data-science data-version-control developer-tools dvc git machine-learning python reproducibility

Last synced: about 6 hours ago
JSON representation

Stop programming common dvc stages. Configure them.

Awesome Lists containing this project

README

        

[![img](https://img.shields.io/github/contributors/MArpogaus/dvc-stage.svg?style=flat-square)](https://github.com/MArpogaus/dvc-stage/graphs/contributors)
[![img](https://img.shields.io/github/forks/MArpogaus/dvc-stage.svg?style=flat-square)](https://github.com/MArpogaus/dvc-stage/network/members)
[![img](https://img.shields.io/github/stars/MArpogaus/dvc-stage.svg?style=flat-square)](https://github.com/MArpogaus/dvc-stage/stargazers)
[![img](https://img.shields.io/github/issues/MArpogaus/dvc-stage.svg?style=flat-square)](https://github.com/MArpogaus/dvc-stage/issues)
[![img](https://img.shields.io/github/license/MArpogaus/dvc-stage.svg?style=flat-square)](https://github.com/MArpogaus/dvc-stage/blob/main/LICENSE)
[![img](https://img.shields.io/github/actions/workflow/status/MArpogaus/dvc-stage/run_demo.yaml.svg?label=test&style=flat-square)](https://github.com/MArpogaus/dvc-stage/actions/workflows/run_demo.yaml)
[![img](https://img.shields.io/github/actions/workflow/status/MArpogaus/dvc-stage/release.yaml.svg?label=release&style=flat-square)](https://github.com/MArpogaus/dvc-stage/actions/workflows/release.yaml)
[![img](https://img.shields.io/badge/pre--commit-enabled-brightgreen.svg?logo=pre-commit&style=flat-square)](https://github.com/MArpogaus/dvc-stage/blob/main/.pre-commit-config.yaml)
[![img](https://img.shields.io/badge/-LinkedIn-black.svg?style=flat-square&logo=linkedin&colorB=555)](https://linkedin.com/in/MArpogaus)

[![img](https://img.shields.io/pypi/v/dvc-stage.svg?style=flat-square)](https://pypi.org/project/dvc-stage)

# DVC-Stage

1. [About The Project](#org8c385f4)
2. [Getting Started](#orgb60b632)
1. [Prerequisites](#orgc8328c6)
2. [Installation](#org86643e5)
3. [Usage](#orgc30aa7f)
4. [Contributing](#orgee2d7cf)
5. [License](#orgededbbb)
6. [Contact](#org4d9524e)
7. [Acknowledgments](#org3ccffb6)

## About The Project

This python script provides a easy and parameterizeable way of defining typical dvc (sub-)stages for:

- data prepossessing
- data transformation
- data splitting
- data validation

## Getting Started

This is an example of how you may give instructions on setting up your
project locally. To get a local copy up and running follow these simple
example steps.

### Prerequisites

- `pandas>=0.20.*`
- `dvc>=2.12.*`
- `pyyaml>=5`

### Installation

This package is available on [PyPI](https://pypi.org/project/dvc-stage/).
You install it and all of its dependencies using pip:

pip install dvc-stage

## Usage

DVC-Stage works ontop of two files: `dvc.yaml` and `params.yaml`. They
are expected to be at the root of an initialized [dvc
project](https://dvc.org/). From there you can execute `dvc-stage -h` to see available
commands or `dvc-stage get-config STAGE` to generate the dvc stages from
the `params.yaml` file. The tool then generates the respective yaml
which you can then manually paste into the `dvc.yaml` file. Existing
stages can then be updated inplace using `dvc-stage update-stage STAGE`.

Stages are defined inside `params.yaml` in the following schema:

STAGE_NAME:
load: {}
transformations: []
validations: []
write: {}

The `load` and `write` sections both require the yaml-keys `path` and
`format` to read and save data respectively.

The `transformations` and `validations` sections require a sequence of
functions to apply, where `transformations` return data and
`validations` return a truth value (derived from data). Functions are
defined by the key `id` an can be either:

- Methods defined on Pandas Dataframes, e.g.

transformations:
- id: transpose

- Imported from any python module, e.g.

transformations:
- id: custom
description: duplikate rows
import_from: demo.duplicate

- Predefined by DVC-Stage, e.g.

validations:
- id: validate_pandera_schema
schema:
import_from: demo.get_schema

When writing a custom function, you need to make sure the function
gracefully handles data being `None`, which is required for type
inference. Data is passed as first argument. Further arguments can be
provided as additional keys, as shown above for
`validate_pandera_schema`, where schema is passed as second argument to
the function.

A working demonstration can be found at `examples/`.

## Contributing

Any Contributions are greatly appreciated! If you have a question, an issue or would like to contribute, please read our [contributing guidelines](CONTRIBUTING.md).

## License

Distributed under the [GNU General Public License v3](COPYING)

## Contact

[Marcel Arpogaus](https://github.com/MArpogaus/) - [[email protected]](mailto:[email protected]) (encrypted with [ROT13]())

Project Link:

## Acknowledgments

Parts of this work have been funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety due to a decision of the German Federal Parliament (AI4Grids: 67KI2012A).