Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/marqo-ai/marqo-fashionclip
State-of-the-art CLIP-like models finetuned for the fashion domain. +57% increase in evaluation metrics vs FashionCLIP 2.0.
https://github.com/marqo-ai/marqo-fashionclip
clip embeddings fashion-classifier fashionclip informationretrieval multimodal recomendations search transformers vectorsearch vision-transformer
Last synced: 4 days ago
JSON representation
State-of-the-art CLIP-like models finetuned for the fashion domain. +57% increase in evaluation metrics vs FashionCLIP 2.0.
- Host: GitHub
- URL: https://github.com/marqo-ai/marqo-fashionclip
- Owner: marqo-ai
- License: apache-2.0
- Created: 2024-08-05T04:41:09.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-09-17T00:39:04.000Z (2 months ago)
- Last Synced: 2024-09-17T04:48:57.272Z (2 months ago)
- Topics: clip, embeddings, fashion-classifier, fashionclip, informationretrieval, multimodal, recomendations, search, transformers, vectorsearch, vision-transformer
- Language: Python
- Homepage: https://huggingface.co/Marqo
- Size: 11.1 MB
- Stars: 41
- Watchers: 3
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
# Marqo-FashionCLIP
This repository is designed to evaluate Marqo-FashionCLIP and Marqo-FashionSigLIP across seven public benchmark datasets. Read more about the models on our [blog](https://www.marqo.ai/blog/search-model-for-fashion).
## Benchmark Results
We averaged the performance of three common tasks across the datasets: text-to-image, category-to-product, and sub-category-to-product. As demonstrated below, Marqo-FashionCLIP and Marqo-FashionSigLIP outperform both pretrained OpenCLIP models and the state-of-the-art fashion CLIP models. For a more comprehensive performance comparison, refer to the [LEADERBOARD](LEADERBOARD.md).**Text-To-Image (Averaged across 6 datasets)**
| Model | AvgRecall | Recall@1 | Recall@10 | MRR |
|----------------------------|-------------|------------|-------------|-----------|
| Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** |
| Marqo-FashionCLIP | 0.192 | 0.094 | 0.290 | 0.200 |
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
| ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 |**Category-To-Product (Averaged across 5 datasets)**
| Model | AvgP | P@1 | P@10 | MRR |
|----------------------------|-----------|-----------|-----------|-----------|
| Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** |
| Marqo-FashionCLIP | 0.705 | 0.734 | 0.676 | 0.776 |
| FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 |
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
| ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 |**Sub-Category-To-Product (Averaged across 4 datasets)**
| Model | AvgP | P@1 | P@10 | MRR |
|----------------------------|-----------|-----------|-----------|-----------|
| Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** |
| Marqo-FashionCLIP | 0.707 | 0.747 | 0.667 | 0.772 |
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |
| ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 |## Models
### Hugging Face
We released our models on HuggingFace: [Marqo-FashionCLIP](https://huggingface.co/Marqo/marqo-fashionCLIP) and [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP). We also have a Hugging Face Space Demo of our models in action: [Classification with Marqo-FashionSigLIP](https://huggingface.co/spaces/Marqo/Marqo-FashionSigLIP-Classification).You can load the models with `transformers` by
```python
from transformers import AutoModel, AutoProcessor
model = AutoModel.from_pretrained('Marqo/marqo-fashionCLIP', trust_remote_code=True)
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionCLIP', trust_remote_code=True)
```
and
```python
from transformers import AutoModel, AutoProcessor
model = AutoModel.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True)
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True)
```
Then,
```python
import torch
from PIL import Imageimage = [Image.open("docs/fashion-hippo.png")]
text = ["a hat", "a t-shirt", "shoes"]
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")with torch.no_grad():
image_features = model.get_image_features(processed['pixel_values'], normalize=True)
text_features = model.get_text_features(processed['input_ids'], normalize=True)text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
```We released this [article](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip) illustrating a simple ecommerce search with a fashion dataset if you want to see the model in action.
### OpenCLIP
You can load the models with `open_clip` by```python
import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
```
and
```python
import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
```
Then,
```python
import torch
from PIL import Imageimage = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image, normalize=True)
text_features = model.encode_text(text, normalize=True)text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
```### Marqo
To deploy on Marqo Cloud (recommended):
1. [Sign Up](https://cloud.marqo.ai/) to [Marqo Cloud](https://cloud.marqo.ai/).2. Install Marqo and the Marqo python client:
```bash
pip install marqo
```3. Create and index:
```python
import marqosettings = {
"type": "unstructured",
"model": "marqo-fashion-clip", # model name
"modelProperties": {
"name": "ViT-B-16", # model architecture
"dimensions": 512, # embedding dimensions
"url": "https://marqo-gcl-public.s3.us-west-2.amazonaws.com/marqo-fashionCLIP/marqo_fashionCLIP.pt", # model weights
"type": "open_clip" # loading library
},
}api_key = "your_api_key" # replace with your api key (https://www.marqo.ai/blog/finding-my-marqo-api-key)
mq = marqo.Client("https://api.marqo.ai", api_key=api_key)mq.create_index("fashion-index", settings_dict=settings)
# triggers model download
mq.index("fashion-index").search("black dress")```
See the [full documentation](https://docs.marqo.ai/2.11/#multi-modal-and-cross-modal-search) for more details on adding documents and searching.
## Quick Start
Install PyTorch first and run
```bash
pip install -r requirements.txt
```To evaluate Marqo-FashionCLIP, run this command
```bash
python eval.py \
--dataset-config ./configs/${DATASET}.json \
--model-name Marqo/marqo-fashionCLIP \
--run-name Marqo-FashionCLIP
```
- `DATASET` can be one of ['deepfashion_inshop', 'deepfashion_multimodal', 'fashion200k', 'KAGL', 'atlas', 'polyvore' 'iMaterialist']To evaluate Marqo-FashionSigLIP, run this command
```bash
python eval.py \
--dataset-config ./configs/${DATASET}.json \
--model-name Marqo/marqo-fashionSigLIP \
--run-name Marqo-FashionSigLIP
```
- `DATASET` can be one of ['deepfashion_inshop', 'deepfashion_multimodal', 'fashion200k', 'KAGL', 'atlas', 'polyvore' 'iMaterialist']Scripts to evaluate other models including [FashionCLIP 2.0](https://github.com/patrickjohncyh/fashion-clip) and [OpenFashionCLIP](https://github.com/aimagelab/open-fashion-clip) can be found in [scripts](scripts) directory.
## Datasets
We collected 7 public multimodal fashion datasets and uploaded to HuggingFace: [Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [iMaterialist](https://huggingface.co/datasets/Marqo/iMaterialist), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore). Each dataset has different metadata available. Thus, tasks for each dataset are stored as json files in [scripts](scripts) directory. Refer to our [blog](https://www.marqo.ai/blog/search-model-for-fashion) for more information about each dataset.## Summarizing Results
To renew [LEADERBOARD.md](LEADERBOARD.md) and summarize results of different models locally, run this command
```bash
python summarize_results.py
```## Citation
```
@software{Jung_Marqo-FashionCLIP_and_Marqo-FashionSigLIP_2024,
author = {Jung, Myong Chol and Clark, Jesse},
month = aug,
title = {{Marqo-FashionCLIP and Marqo-FashionSigLIP}},
url = {https://github.com/marqo-ai/marqo-FashionCLIP},
version = {1.0.0},
year = {2024}
}
```