Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/marsggbo/torchline
Easy to use Pytorch
https://github.com/marsggbo/torchline
demo pipeline-framework pytorch pytorch-lightning torchline
Last synced: 4 days ago
JSON representation
Easy to use Pytorch
- Host: GitHub
- URL: https://github.com/marsggbo/torchline
- Owner: marsggbo
- License: mit
- Created: 2019-12-11T05:59:52.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-11-10T07:00:31.000Z (over 4 years ago)
- Last Synced: 2024-12-12T08:02:29.882Z (2 months ago)
- Topics: demo, pipeline-framework, pytorch, pytorch-lightning, torchline
- Language: Python
- Size: 188 KB
- Stars: 71
- Watchers: 6
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# torchline v0.3.0.4
> Easy to use Pytorch
>
> Only one configure file is enough!
>
> You can change anything you want just in only one configure file.# Dependences
- Python>=3.6
- Pytorch>=1.3.1
- torchvision>=0.4.0,<0.5.0
- yacs==0.1.6
- pytorch-lightning<=0.7.6# Install
- Before you install `torchline`, please make sure you have installed the above libraries.
- You can use `torchline` both in Linux and Windows.```bash
pip install torchline
```# Run demo
## train model with GPU0 and GPU 1
```python
cd projects/cifar10_demo
python main.py --config_file cifar10.yaml trainer.gpus [0,1]
```## debug,add command line `trainer.fast_dev_run True`
```python
cd projects/cifar10_demo
python main.py --config_file cifar10.yaml trainer.gpus [0] trainer.fast_dev_run True
```CIFAR demo uses ResNet50,which is trained for 72 epochs and achieved the best result (94.39% validation accuracy) at the epoch 54.
# Thanks
- [AutoML](https://zhuanlan.zhihu.com/automl)
- [pytorch-lightning](https://github.com/PyTorchLightning/pytorch-lightning)