Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/marsggbo/torchline

Easy to use Pytorch
https://github.com/marsggbo/torchline

demo pipeline-framework pytorch pytorch-lightning torchline

Last synced: 4 days ago
JSON representation

Easy to use Pytorch

Awesome Lists containing this project

README

        

# torchline v0.3.0.4

> Easy to use Pytorch
>
> Only one configure file is enough!
>
> You can change anything you want just in only one configure file.

# Dependences

- Python>=3.6
- Pytorch>=1.3.1
- torchvision>=0.4.0,<0.5.0
- yacs==0.1.6
- pytorch-lightning<=0.7.6

# Install

- Before you install `torchline`, please make sure you have installed the above libraries.
- You can use `torchline` both in Linux and Windows.

```bash
pip install torchline
```

# Run demo

## train model with GPU0 and GPU 1
```python
cd projects/cifar10_demo
python main.py --config_file cifar10.yaml trainer.gpus [0,1]
```

## debug,add command line `trainer.fast_dev_run True`
```python
cd projects/cifar10_demo
python main.py --config_file cifar10.yaml trainer.gpus [0] trainer.fast_dev_run True
```

CIFAR demo uses ResNet50,which is trained for 72 epochs and achieved the best result (94.39% validation accuracy) at the epoch 54.

# Thanks

- [AutoML](https://zhuanlan.zhihu.com/automl)
- [pytorch-lightning](https://github.com/PyTorchLightning/pytorch-lightning)