Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/martibosch/carbon-sequestration-vaud
Evaluation of the carbon sequestation for the canton of Vaud
https://github.com/martibosch/carbon-sequestration-vaud
Last synced: 4 days ago
JSON representation
Evaluation of the carbon sequestation for the canton of Vaud
- Host: GitHub
- URL: https://github.com/martibosch/carbon-sequestration-vaud
- Owner: martibosch
- License: gpl-3.0
- Created: 2018-11-07T18:21:15.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-07-14T10:36:07.000Z (over 5 years ago)
- Last Synced: 2024-06-11T16:30:17.207Z (7 months ago)
- Language: Jupyter Notebook
- Homepage: https://doi.org/10.1007/s10980-019-00850-7
- Size: 310 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Evaluation of the carbon sequestration for the canton of Vaud
**Citation**: Jaligot, R., Chenal, J. & Bosch, M. "Assessing spatial temporal patterns of ecosystem services in Switzerland". *Landscape Ecol* (2019): 1-16. https://doi.org/10.1007/s10980-019-00850-7
![Evolution of the carbon stock](evolution-carbon-stock.png)
## Analysis DAG
Given how the Swiss Land Statistics datasets are provided (see [this for more info](https://github.com/martibosch/swisslandstats-geopy)), we work with "LandDataFrames", i.e., tables where each row correspond to an (x, y) geo-referenced pixel, and columns provide categorical information, such as the land use/land cover, elevation, production regions and organic soil. This information is used to compute the carbon stock with the InVEST's carbon model.
![analysis-dag](analysis-dag.png)
The results are displayed in [invest_carbon.ipynb](https://github.com/martibosch/carbon-sequestration-vaud/blob/master/invest_carbon.ipynb)
## Instructions to reproduce the repository
### Preparing the environment
1. Create the conda environment
# the environment's name will be `carbonseq_vaud`
conda env create -f environment.yml2. Configure your S3 profile (credentials, region and endpoint URL)
3. Enter the fresh environment
conda activate carbonseq_vaud
4. Already within the environment, make it available as a `jupyter` kernel as in:
python -m ipykernel install --user --name carbonseq_vaud --display-name "Python (carbonseq_vaud)"
### Reproducing
1. From the repository's root, create a folder named `papermill_outputs`
2. Pull the data from the dvc remote
dvc pull
3. Reproduce the land data framedvc repro data/vaud_ldf.csv.dvc
Now you can execute the Notebook `invest.ipynb`