Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/martibosch/pylandstats-swiss-forests
Analysis with PyLandStats of the evolution of the Swiss forests for the YoMos 2020 workshop
https://github.com/martibosch/pylandstats-swiss-forests
Last synced: 4 days ago
JSON representation
Analysis with PyLandStats of the evolution of the Swiss forests for the YoMos 2020 workshop
- Host: GitHub
- URL: https://github.com/martibosch/pylandstats-swiss-forests
- Owner: martibosch
- License: gpl-3.0
- Created: 2020-05-28T08:56:53.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-06-02T06:39:24.000Z (over 4 years ago)
- Last Synced: 2024-06-11T16:31:25.559Z (7 months ago)
- Language: Jupyter Notebook
- Homepage: https://www.yomos.org
- Size: 3.11 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![GitHub license](https://img.shields.io/github/license/martibosch/pylandstats-swiss-forests.svg)](https://github.com/martibosch/pylandstats-swiss-forests/blob/master/LICENSE)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/martibosch/pylandstats-swiss-forests/master?filepath=notebooks)# PyLandStats Swiss forests
Analysis with PyLandStats of forest evolution in the Swiss cantons of Bern, Fribourg, Neuchatel and Vaud.
![](figure.png)
This repository is part of the [YoMos 2020](https://www.yomos.org) workshop.
## Instructions to execute
### Option 1: via MyBinder
Click the badge below, which will use [MyBinder](https://mybinder.org/) to launch a server with a Jupyter executable environment:
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/martibosch/pylandstats-swiss-forests/master?filepath=notebooks)
### Option 2: locally
1. If you do not have `conda` in your computer, [download and install it](https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html).
2. Clone the repository and change directory to the repository's root:
```bash
git clone https://github.com/martibosch/pylandstats-swiss-forests
cd pylandstats-swiss-forests
```3. Create the environment and activate it:
```bash
conda env create -f environment.yml
# the above command creates a conda environment named `pylandstats-swiss-forests`
conda activate pylandstats-swiss-forests
```4. Register the IPython kernel of the `pylandstats-swiss-forests` environment:
```bash
python -m ipykernel install --user --name pylandstats-swiss-forests --display-name \
"Python (pylandstats-swiss-forests)"
```5. You can test that the installation worked by running the following command:
```bash
python -c 'import pylandstats as pls ; pls.Landscape("data/raw/AS18_17.tif") ; print("OK")'
```6. Run a local jupyter notebook server and you can now exectue [the notebooks of this repository](https://github.com/martibosch/pylandstats-swiss-forests/blob/notebooks):
```bash
jupyter-notebook --notebook-dir=notebooks
```## Acknowledgements
* The land use/land cover data has been extracted from the [Swiss Land Statistics datasets from the Swiss Federal Statistical Office (SFSO)](https://www.bfs.admin.ch/bfs/fr/home/services/geostat/geodonnees-statistique-federale/sol-utilisation-couverture/statistique-suisse-superficie.html) (link in French) with the [swisslandstats-geopy](https://github.com/martibosch/swisslandstats-geopy) library.
* The digital elevation model has been extracted from the [free version of the digital height model of Switzerland by the Swiss Federal Office of Topography (swisstopo)](https://shop.swisstopo.admin.ch/en/products/height_models/dhm25200).
* Project based on the [cookiecutter data science project template](https://drivendata.github.io/cookiecutter-data-science). #cookiecutterdatascience