Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/martinomensio/spacy-sentence-bert
Sentence transformers models for SpaCy
https://github.com/martinomensio/spacy-sentence-bert
bert models nlp sentence-bert sentence-transformers spacy
Last synced: 24 days ago
JSON representation
Sentence transformers models for SpaCy
- Host: GitHub
- URL: https://github.com/martinomensio/spacy-sentence-bert
- Owner: MartinoMensio
- License: mit
- Created: 2020-07-24T13:01:45.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-03-09T13:35:08.000Z (almost 2 years ago)
- Last Synced: 2024-12-19T02:07:30.187Z (24 days ago)
- Topics: bert, models, nlp, sentence-bert, sentence-transformers, spacy
- Language: Python
- Homepage:
- Size: 55.7 KB
- Stars: 106
- Watchers: 4
- Forks: 7
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![Tests](https://github.com/MartinoMensio/spacy-sentence-bert/actions/workflows/tests.yml/badge.svg)](https://github.com/MartinoMensio/spacy-sentence-bert/actions/workflows/tests.yml)
[![Downloads](https://static.pepy.tech/badge/spacy-sentence-bert)](https://pepy.tech/project/spacy-sentence-bert)
[![Current Release Version](https://img.shields.io/github/release/MartinoMensio/spacy-sentence-bert.svg?style=flat-square&logo=github)](https://github.com/MartinoMensio/spacy-sentence-bert/releases)
[![pypi Version](https://img.shields.io/pypi/v/spacy-sentence-bert.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/spacy-sentence-bert/)
# Sentence-BERT for spaCyThis package wraps [sentence-transformers](https://github.com/UKPLab/sentence-transformers) (also known as [sentence-BERT](http://arxiv.org/abs/1908.10084)) directly in spaCy.
You can substitute the vectors provided in any [spaCy model](https://spacy.io/models) with vectors that have been tuned specifically for semantic similarity.The models below are suggested for analysing sentence similarity, as the STS benchmark indicates.
Keep in mind that `sentence-transformers` are configured with a maximum sequence length of 128. Therefore for longer texts it may be more suitable to work with other models (e.g. [Universal Sentence Encoder](https://github.com/MartinoMensio/spacy-universal-sentence-encoder-tfhub)).## Install
Compatibility:
- python 3.7/3.8/3.9/3.10
- spaCy>=3.0.0,<4.0.0, last tested on version 3.5
- sentence-transformers: tested on version 2.2.2To install this package, you can run one of the following:
- `pip install spacy-sentence-bert`
- `pip install git+https://github.com/MartinoMensio/spacy-sentence-bert.git`You can install standalone spaCy packages from GitHub with pip. If you install standalone packages, you will be able to load a language model directly by using the `spacy.load` API, without need to add a pipeline stage.
This table takes the models listed on the [Sentence Transformers documentation](https://www.sbert.net/docs/pretrained_models.html) and shows some statistics along with the instruction to install the standalone models.
If you don't want to install the standalone models, you can still use them by adding a pipeline stage (see below).| sentence-BERT name | spacy model name | dimensions | language | STS benchmark | standalone install |
|----------------------------------------|--------------------|----------------------|------------|---------------|---------|
| `paraphrase-distilroberta-base-v1` | `en_paraphrase_distilroberta_base_v1` | 768 | en | 81.81 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_paraphrase_distilroberta_base_v1-0.1.2.tar.gz#en_paraphrase_distilroberta_base_v1-0.1.2` |
| `paraphrase-xlm-r-multilingual-v1` | `xx_paraphrase_xlm_r_multilingual_v1` | 768 | 50+ | 83.50 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/xx_paraphrase_xlm_r_multilingual_v1-0.1.2.tar.gz#xx_paraphrase_xlm_r_multilingual_v1-0.1.2` |
| `stsb-roberta-large` | `en_stsb_roberta_large` | 1024 | en | 86.39 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_stsb_roberta_large-0.1.2.tar.gz#en_stsb_roberta_large-0.1.2` |
| `stsb-roberta-base` | `en_stsb_roberta_base` | 768 | en | 85.44 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_stsb_roberta_base-0.1.2.tar.gz#en_stsb_roberta_base-0.1.2` |
| `stsb-bert-large` | `en_stsb_bert_large` | 1024 | en | 85.29 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_stsb_bert_large-0.1.2.tar.gz#en_stsb_bert_large-0.1.2` |
| `stsb-distilbert-base` | `en_stsb_distilbert_base` | 768 | en | 85.16 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_stsb_distilbert_base-0.1.2.tar.gz#en_stsb_distilbert_base-0.1.2` |
| `stsb-bert-base` | `en_stsb_bert_base` | 768 | en | 85.14 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_stsb_bert_base-0.1.2.tar.gz#en_stsb_bert_base-0.1.2` |
| `nli-bert-large` | `en_nli_bert_large` | 1024 | en | 79.19 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_bert_large-0.1.2.tar.gz#en_nli_bert_large-0.1.2` |
| `nli-distilbert-base` | `en_nli_distilbert_base` | 768 | en | 78.69 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_distilbert_base-0.1.2.tar.gz#en_nli_distilbert_base-0.1.2` |
| `nli-roberta-large` | `en_nli_roberta_large` | 1024 | en | 78.69 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_roberta_large-0.1.2.tar.gz#en_nli_roberta_large-0.1.2` |
| `nli-bert-large-max-pooling` | `en_nli_bert_large_max_pooling` | 1024 | en | 78.41 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_bert_large_max_pooling-0.1.2.tar.gz#en_nli_bert_large_max_pooling-0.1.2` |
| `nli-bert-large-cls-pooling` | `en_nli_bert_large_cls_pooling` | 1024 | en | 78.29 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_bert_large_cls_pooling-0.1.2.tar.gz#en_nli_bert_large_cls_pooling-0.1.2` |
| `nli-distilbert-base-max-pooling` | `en_nli_distilbert_base_max_pooling` | 768 | en | 77.61 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_distilbert_base_max_pooling-0.1.2.tar.gz#en_nli_distilbert_base_max_pooling-0.1.2` |
| `nli-roberta-base` | `en_nli_roberta_base` | 768 | en | 77.49 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_roberta_base-0.1.2.tar.gz#en_nli_roberta_base-0.1.2` |
| `nli-bert-base-max-pooling` | `en_nli_bert_base_max_pooling` | 768 | en | 77.21 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_bert_base_max_pooling-0.1.2.tar.gz#en_nli_bert_base_max_pooling-0.1.2` |
| `nli-bert-base` | `en_nli_bert_base` | 768 | en | 77.12 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_bert_base-0.1.2.tar.gz#en_nli_bert_base-0.1.2` |
| `nli-bert-base-cls-pooling` | `en_nli_bert_base_cls_pooling` | 768 | en | 76.30 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nli_bert_base_cls_pooling-0.1.2.tar.gz#en_nli_bert_base_cls_pooling-0.1.2` |
| `average_word_embeddings_glove.6B.300d` | `en_average_word_embeddings_glove.6B.300d` | 768 | en | 61.77 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_average_word_embeddings_glove.6B.300d-0.1.2.tar.gz#en_average_word_embeddings_glove.6B.300d-0.1.2` |
| `average_word_embeddings_komninos` | `en_average_word_embeddings_komninos` | 768 | en | 61.56 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_average_word_embeddings_komninos-0.1.2.tar.gz#en_average_word_embeddings_komninos-0.1.2` |
| `average_word_embeddings_levy_dependency` | `en_average_word_embeddings_levy_dependency` | 768 | en | 59.22 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_average_word_embeddings_levy_dependency-0.1.2.tar.gz#en_average_word_embeddings_levy_dependency-0.1.2` |
| `average_word_embeddings_glove.840B.300d` | `en_average_word_embeddings_glove.840B.300d` | 768 | en | 52.54 | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_average_word_embeddings_glove.840B.300d-0.1.2.tar.gz#en_average_word_embeddings_glove.840B.300d-0.1.2` |
| `quora-distilbert-base` | `en_quora_distilbert_base` | 768 | en | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_quora_distilbert_base-0.1.2.tar.gz#en_quora_distilbert_base-0.1.2` |
| `quora-distilbert-multilingual` | `xx_quora_distilbert_multilingual` | 768 | 50+ | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/xx_quora_distilbert_multilingual-0.1.2.tar.gz#xx_quora_distilbert_multilingual-0.1.2` |
| `msmarco-distilroberta-base-v2` | `en_msmarco_distilroberta_base_v2` | 768 | en | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_msmarco_distilroberta_base_v2-0.1.2.tar.gz#en_msmarco_distilroberta_base_v2-0.1.2` |
| `msmarco-roberta-base-v2` | `en_msmarco_roberta_base_v2` | 768 | en | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_msmarco_roberta_base_v2-0.1.2.tar.gz#en_msmarco_roberta_base_v2-0.1.2` |
| `msmarco-distilbert-base-v2` | `en_msmarco_distilbert_base_v2` | 768 | en | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_msmarco_distilbert_base_v2-0.1.2.tar.gz#en_msmarco_distilbert_base_v2-0.1.2` |
| `nq-distilbert-base-v1` | `en_nq_distilbert_base_v1` | 768 | en | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_nq_distilbert_base_v1-0.1.2.tar.gz#en_nq_distilbert_base_v1-0.1.2` |
| `distiluse-base-multilingual-cased-v2` | `xx_distiluse_base_multilingual_cased_v2` | 512 | 50+ | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/xx_distiluse_base_multilingual_cased_v2-0.1.2.tar.gz#xx_distiluse_base_multilingual_cased_v2-0.1.2` |
| `stsb-xlm-r-multilingual` | `xx_stsb_xlm_r_multilingual` | 768 | 50+ | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/xx_stsb_xlm_r_multilingual-0.1.2.tar.gz#xx_stsb_xlm_r_multilingual-0.1.2` |
| `T-Systems-onsite/cross-en-de-roberta-sentence-transformer` | `xx_cross_en_de_roberta_sentence_transformer` | 768 | en,de | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/xx_cross_en_de_roberta_sentence_transformer-0.1.2.tar.gz#xx_cross_en_de_roberta_sentence_transformer-0.1.2` |
| `LaBSE` | `xx_LaBSE` | 768 | 109 | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/xx_LaBSE-0.1.2.tar.gz#xx_LaBSE-0.1.2` |
| `allenai-specter` | `en_allenai_specter` | 768 | en | N/A | `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_allenai_specter-0.1.2.tar.gz#en_allenai_specter-0.1.2` |If your model is not in this list (e.g., `xlm-r-base-en-ko-nli-ststb`), you can still use it with this library but not as a standalone language. You will need to add a pipeline stage properly configured (see below the `nlp.add_pipe` API).
## Usage
There are different ways to load the models of `sentence-bert`.
- `spacy.load` API: you need to have installed one of the models from the table above
- `spacy_sentence_bert.load_model`: you can load one of the models from the table above without having installed the standalone packages
- `nlp.add_pipe` API: you can load any of the `sentence-bert` models on top of your `nlp` object### `spacy.load` API
Standalone model installed from GitHub (e.g., from the table above, `pip install https://github.com/MartinoMensio/spacy-sentence-bert/releases/download/v0.1.2/en_stsb_roberta_large-0.1.2.tar.gz#en_stsb_roberta_large-0.1.2`), you can load directly the model with the spaCy API:
```python
import spacy
nlp = spacy.load('en_stsb_roberta_large')
```### `spacy_sentence_bert.load_model` API
You can obtain the same result without having to install the standalone model, by using this method:
```python
import spacy_sentence_bert
nlp = spacy_sentence_bert.load_model('en_stsb_roberta_large')
```### `nlp.add_pipe` API
If you want to use one of the sentence embeddings over an existing Language object, you can use the `nlp.add_pipe` method.
This also works if you want to use a language model that is not listed in the table above. Just make sure that [sentence-transformers](https://github.com/UKPLab/sentence-transformers) supports it.```python
import spacy
nlp = spacy.blank('en')
nlp.add_pipe('sentence_bert', config={'model_name': 'allenai-specter'})
nlp.pipe_names
```The models, when first used, download sentence-BERT to the folder defined with `TORCH_HOME` in the environment variables (default `~/.cache/torch`).
Once you have loaded the model, use it through the `vector` property and the `similarity` method of spaCy:
```python
# get two documents
doc_1 = nlp('Hi there, how are you?')
doc_2 = nlp('Hello there, how are you doing today?')
# get the vector of the Doc, Span or Token
print(doc_1.vector.shape)
print(doc_1[3].vector.shape)
print(doc_1[2:4].vector.shape)
# or use the similarity method that is based on the vectors, on Doc, Span or Token
print(doc_1.similarity(doc_2[0:7]))
```## Utils
To build and upload
```bash
VERSION=0.1.2
# build the standalone models (17)
./build_models.sh
# build the archive at dist/spacy_sentence_bert-${VERSION}.tar.gz
python setup.py sdist
# upload to pypi
twine upload dist/spacy_sentence_bert-${VERSION}.tar.gz
```