Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/martinthoma/msthesis-experiments
Experiments for my masters thesis
https://github.com/martinthoma/msthesis-experiments
tex thesis
Last synced: 2 days ago
JSON representation
Experiments for my masters thesis
- Host: GitHub
- URL: https://github.com/martinthoma/msthesis-experiments
- Owner: MartinThoma
- Created: 2017-03-03T11:40:26.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2020-06-27T02:29:42.000Z (over 4 years ago)
- Last Synced: 2024-12-26T07:41:52.619Z (8 days ago)
- Topics: tex, thesis
- Language: Python
- Size: 645 KB
- Stars: 16
- Watchers: 5
- Forks: 4
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# msthesis-experiments
Experiments for the masters thesis of Martin ThomaEvery experiment is a YAML file. See the experiments folder for some examples.
## Requirements
* matplotlib
* Tensorflow 1.0
* Keras 2.0 (adjusted [preprocessing/image.py](https://github.com/fchollet/keras/pull/6003), see misc directory)
* seabornIf you get `TypeError: __init__() got an unexpected keyword argument
'hsv_augmentation'` you didn't adjust the `image.py`. Just copy the one in
the misc folder to `python -c "import keras.preprocessing.image as k;print(k.__file__)"`## Scripts
* `./run_training.py -f experiments/cifar100_baseline.yaml`: Train a model. Downloads everything by its own
* `./analyze_training.py -d artifacts/cifar100_baseline`: Show some training statistics
* `./inference_timing.py -f experiments/cifar100_baseline.yaml`: Run inference on a given trained model and measure the time
* `./eval_ensemble.py -f ensemble/cifar100_baseline.yaml`: Evaluate an ensemble
* `./visualize.py --cm artifacts/cifar100_root/cm-test.json`: Confusion matrix optimization
* `./create_cm.py --indices cm.indices.pickle -f experiments/cifar100_root-g5.yaml`## Run timining experiments
Measuring inference time needs about 2 minutes:
```
$ ./inference_timing.py -f experiments/cifar10_baseline.yaml
```Measuring training time takes about 70 minutes:
```
$ ./run_training.py -f experiments/cifar10_baseline.yaml
```