Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/masasron/deepnet

DeepNet is simple node based cli tool for creating machine learning classifiers you can use on the web.
https://github.com/masasron/deepnet

classifier classifier-training deep-learning deep-neural-networks machine-learning nodejs

Last synced: about 1 month ago
JSON representation

DeepNet is simple node based cli tool for creating machine learning classifiers you can use on the web.

Awesome Lists containing this project

README

        

# DeepNet
DeepNet is simple node based cli tool for creating machine learning classifiers you can use on the web.

```bash
root$ node deepnet/src/cli.js -h

Usage: cli [options] [command]

Options:

-V, --version output the version number
-h, --help output usage information

Commands:

train [options]
make-dataset [options]
predict [options]
```

### Train

```bash
root$ node deepnet/src/cli.js train -h

Usage: train [options]

Options:

-t, --test-dataset-percentage percentage of datasets to keep for testing (default: 25)
-n, --name choose a name for your model (default: model-1518027472621)
-s, --save-period save model every iterations (default: 20000)
-v, --vectorize automatically vectorize strings from training data (default: true)
-l, --learning-rate network learning rate (default: 0.1)
-e, --error-threshold minimum error threshold (default: 0.005)
-y, --hidden-layers number of hidden layers (default: 6)
-i, --iterations maximum number of iterations (default: 20000)
-p, --log-period log progress every iterations (default: 25)
-g, --log log traning progress (default: true)
-r, --randomize randomize dataset (default: true)
-a, --activation activation function (default: sigmoid)
-h, --help output usage information
```

The train command require a JSON dataset file in the format below.
You may use the `make-dataset` helper command to generate this file.

```json
[
{
"input": [0.1,0.2,0.3],
"output": [0.6]
},
{
"input": [0.1,0,0],
"output": [0.1]
}
]
```

### Make Dataset

```sh
root$ node deepnet/src/cli.js make-dataset -h

Usage: make-dataset [options]

Options:

-n, --name choose a dataset name (default: dataset-1518028193094)
-v, --vectorize automatically vectorize strings (default: true)
-h, --help output usage information
```

### Predict

You can use the predict command to load an existing model.

```sh
root$ node deepnetsrc/cli.js predict -h

Usage: predict [options]

Options:

path to the model .bin file
test data as string (if -, read from stdin)
-h, --help output usage information
```