Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/masasron/deepnet
DeepNet is simple node based cli tool for creating machine learning classifiers you can use on the web.
https://github.com/masasron/deepnet
classifier classifier-training deep-learning deep-neural-networks machine-learning nodejs
Last synced: about 1 month ago
JSON representation
DeepNet is simple node based cli tool for creating machine learning classifiers you can use on the web.
- Host: GitHub
- URL: https://github.com/masasron/deepnet
- Owner: masasron
- License: mit
- Created: 2018-02-04T05:16:02.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-02-11T14:16:20.000Z (almost 7 years ago)
- Last Synced: 2024-10-13T06:51:00.488Z (3 months ago)
- Topics: classifier, classifier-training, deep-learning, deep-neural-networks, machine-learning, nodejs
- Language: JavaScript
- Homepage:
- Size: 43 KB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DeepNet
DeepNet is simple node based cli tool for creating machine learning classifiers you can use on the web.```bash
root$ node deepnet/src/cli.js -hUsage: cli [options] [command]
Options:
-V, --version output the version number
-h, --help output usage informationCommands:
train [options]
make-dataset [options]
predict [options]
```### Train
```bash
root$ node deepnet/src/cli.js train -hUsage: train [options]
Options:
-t, --test-dataset-percentage percentage of datasets to keep for testing (default: 25)
-n, --name choose a name for your model (default: model-1518027472621)
-s, --save-period save model every iterations (default: 20000)
-v, --vectorize automatically vectorize strings from training data (default: true)
-l, --learning-rate network learning rate (default: 0.1)
-e, --error-threshold minimum error threshold (default: 0.005)
-y, --hidden-layers number of hidden layers (default: 6)
-i, --iterations maximum number of iterations (default: 20000)
-p, --log-period log progress every iterations (default: 25)
-g, --log log traning progress (default: true)
-r, --randomize randomize dataset (default: true)
-a, --activation activation function (default: sigmoid)
-h, --help output usage information
```The train command require a JSON dataset file in the format below.
You may use the `make-dataset` helper command to generate this file.```json
[
{
"input": [0.1,0.2,0.3],
"output": [0.6]
},
{
"input": [0.1,0,0],
"output": [0.1]
}
]
```### Make Dataset
```sh
root$ node deepnet/src/cli.js make-dataset -hUsage: make-dataset [options]
Options:
-n, --name choose a dataset name (default: dataset-1518028193094)
-v, --vectorize automatically vectorize strings (default: true)
-h, --help output usage information
```### Predict
You can use the predict command to load an existing model.
```sh
root$ node deepnetsrc/cli.js predict -hUsage: predict [options]
Options:
path to the model .bin file
test data as string (if -, read from stdin)
-h, --help output usage information
```