Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/massimilianovisintainer/house-price-model-prediction

House price prediction model using XGBoost.
https://github.com/massimilianovisintainer/house-price-model-prediction

machine-learning models numpy pandas python sklearn xgboost xgboost-regression

Last synced: 14 days ago
JSON representation

House price prediction model using XGBoost.

Awesome Lists containing this project

README

        

## House Price Prediction Model

### Overview
This repository contains a Jupyter Notebook (`House Price Prediction.ipynb`) utilizing XGBoost regression to predict house prices based on various features.

### Functionality
* Imports necessary libraries.
* Loads and analyzes the house price dataset.
* Explores data correlations.
* Splits data into training and testing sets.
* Trains an XGBoost regression model.
* Evaluates model performance on training and testing data.
* Visualizes actual vs. predicted prices.

### Requirements
* Python 3.x
* pandas
* numpy
* matplotlib
* seaborn
* scikit-learn
* XGBoost

### How to Use
1. Clone this repository.
2. Install required libraries: `pip install pandas numpy matplotlib seaborn scikit-learn xgboost`
3. Open `House Price Prediction.ipynb` in Jupyter Notebook.
4. Replace data path if necessary.
5. Run notebook cells to execute code and view results.