Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/massimilianovisintainer/house-price-model-prediction
House price prediction model using XGBoost.
https://github.com/massimilianovisintainer/house-price-model-prediction
machine-learning models numpy pandas python sklearn xgboost xgboost-regression
Last synced: 14 days ago
JSON representation
House price prediction model using XGBoost.
- Host: GitHub
- URL: https://github.com/massimilianovisintainer/house-price-model-prediction
- Owner: MassimilianoVisintainer
- Created: 2024-07-24T18:54:50.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-07-24T18:56:56.000Z (4 months ago)
- Last Synced: 2024-10-10T08:20:50.003Z (about 1 month ago)
- Topics: machine-learning, models, numpy, pandas, python, sklearn, xgboost, xgboost-regression
- Language: Python
- Homepage:
- Size: 15.6 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## House Price Prediction Model
### Overview
This repository contains a Jupyter Notebook (`House Price Prediction.ipynb`) utilizing XGBoost regression to predict house prices based on various features.### Functionality
* Imports necessary libraries.
* Loads and analyzes the house price dataset.
* Explores data correlations.
* Splits data into training and testing sets.
* Trains an XGBoost regression model.
* Evaluates model performance on training and testing data.
* Visualizes actual vs. predicted prices.### Requirements
* Python 3.x
* pandas
* numpy
* matplotlib
* seaborn
* scikit-learn
* XGBoost### How to Use
1. Clone this repository.
2. Install required libraries: `pip install pandas numpy matplotlib seaborn scikit-learn xgboost`
3. Open `House Price Prediction.ipynb` in Jupyter Notebook.
4. Replace data path if necessary.
5. Run notebook cells to execute code and view results.