https://github.com/masterdezign/rc
Reservoir Computing, an RNN flavor
https://github.com/masterdezign/rc
esn haskell lsm neural-networks recurrent-neural-networks reservoir-computing rnn
Last synced: 7 months ago
JSON representation
Reservoir Computing, an RNN flavor
- Host: GitHub
- URL: https://github.com/masterdezign/rc
- Owner: masterdezign
- License: bsd-3-clause
- Created: 2018-02-17T21:29:58.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2020-10-08T20:05:27.000Z (over 5 years ago)
- Last Synced: 2024-04-25T23:22:01.128Z (almost 2 years ago)
- Topics: esn, haskell, lsm, neural-networks, recurrent-neural-networks, reservoir-computing, rnn
- Language: Haskell
- Homepage: https://hackage.haskell.org/package/rc
- Size: 260 KB
- Stars: 7
- Watchers: 4
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: ChangeLog.md
- License: LICENSE
Awesome Lists containing this project
README
# Reservoir Computing
Facilitating RC research
## Features
* [Nonlinear transient computing (NTC)](https://github.com/masterdezign/rc/tree/master/examples/NTC)
* Echo State Networks (ESNs) (upcoming)
## Getting Started
Use [Stack](http://haskellstack.org).
$ git clone https://github.com/masterdezign/rc.git && cd rc
$ stack build --install-ghc
### [Example 1](https://github.com/masterdezign/rc/tree/master/examples/NTC). NTC, time series forecasting
$ stack exec ntc
Error: 3.1103181863915367e-3
Visualize the prediction results:
$ python3 examples/NTC/plot.py

Great!
## Further reading
* Appeltant, L., et al. “Information Processing Using a Single
Dynamical Node as Complex System.” Nature Communications, vol. 2,
2011, p. 468., doi:10.1038/ncomms1476.
* Larger, L., et al. “Photonic Information Processing beyond Turing: an Optoelectronic Implementation of Reservoir Computing.” Optics Express, vol. 20, no. 3, 2012, p. 3241., doi:10.1364/oe.20.003241.
* Rabinovič, Mihail Izrailevič, et al. Principles of Brain Dynamics: Global State Interactions. The MIT Press, 2012.
* Jaeger, H. “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication.” Science, vol. 304, no. 5667, Feb. 2004, pp. 78–80., doi:10.1126/science.1091277.
* Bogdan Penkovsky. Theory and Modeling of Complex Nonlinear Delay Dynamics Applied to Neuromorphic Computing. Artificial Intelligence [cs.AI]. Université Bourgogne Franche-Comté, 2017. English. 〈tel-01591441v2〉