Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/matachi/mve255-matematisk-analys-i-flera-variabler

MATLAB Exercises from MVE255 at Chalmers, http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/
https://github.com/matachi/mve255-matematisk-analys-i-flera-variabler

Last synced: 4 days ago
JSON representation

MATLAB Exercises from MVE255 at Chalmers, http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/

Awesome Lists containing this project

README

        

MVE255, Matematisk analys i flera variabler M, 2012/13
======================================================

Daniel Jonsson, IT, Chalmers

[Course site](http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/)

## Exercise 2

>> jacobi(@funk2, [1;2])

ans =

-4.0000 0
-2.0000 -1.0000

>> newton(@funk2, [1;1], 0.1)

ans =

1.0000
2.0000

>> newton(@funk2, [-2;-1], 10^-6)

ans =

-1.0000
-2.0000

## Dugga 1

### Question 1

>> jacobi(@funk3, [1;2;3])

ans =

0.7539 2.2617 1.5078
1.6765 0.8382 0.5588

### Question 4

>> newton(@funk4, [-1;-1;-5], 10^-6)

ans =

-0.4343
-0.4343
5.3028

>> newton(@funk4, [-1;-1;-1], 10^-6)

ans =

1.0000
1.0000
1.0000

### Question 5

Plot `f(x,y) = (2x + y - 3)^2 + (x*y - 1)^2` in Matlab:

>> x = -5:.5:5;
>> y = x;
>> [X, Y] = meshgrid(x, y);
>> Z = (2.*X + Y - 3).^2 + (X.*Y - 1).^2;
>> surfc(X, Y, Z);

[meshgrid documentation](http://www.mathworks.se/help/matlab/ref/meshgrid.html)
[plot3 documentation](http://www.mathworks.se/help/matlab/ref/plot3.html)

Other way to set x and y:

>> x = linspace(-10,10);
>> y = x;

## Exercise 3

The PDF hand-in document:
[exercise3/documentation.pdf](exercise3/documentation.pdf). This contains all
found extreme points, eigenvalues and a bunch of images.
The [Google Docs version can be accessed
here](https://docs.google.com/document/d/1TpmuT33LReuyjWPvGgq1A2E5tpHZDUubNsesFsPfhVM/edit).
Anyone has access to view the document and write comments in it.

### Part 1

[extremeFinder](exercise3/extremeFinder.m) finds an extreme point close to
[0;0]:

>> [p, e] = extremeFinder(@ex3funk1, [0;0], 10e-5)
p =
-0.4214
0.1330
e =
2.3243
8.9020

p = Coordinate for the point, (-0.4214, 0.1330).
e = Eigenvalues for the Hessian matrix. Both are positive, meaning it's
positive definite and it's a local minimum point.

### Part 2

>> [p, e] = extremeFinder(@ex3funk2, [0;0;0], 10e-5)
p =
1.0000
2.0000
0
e =
-2.0000
2.0000
6.0000

The Hessian is indefinite, because there are both positive and negative
eigenvalues. Therefore it's a saddle point.

## Exercise 4

### FEM1 1.4

n=101;
p=linspace(0,1,n);
t=[1:n-1; 2:n; ones(1,n-1)];
e=[1 n; 1 2];
[U, A, b] = MyPoissonSolver(p, t, e, @EqData14, @BdryData14);
U2 = p./2.*(1.-p); % real solution
plot(p,U,p,U2)

### FEM1 1.5

[U, A, b] = MyPoissonSolver(p, t, e, @EqData15, @BdryData15);
U2 = -p.^2./2 + p + 1; % real solution
plot(p,U,p,U2)

### Problem 3

[U, A, b] = MyPoissonSolver(p, t, e, @EqData3, @BdryData3);
plot(p,U)

Explanation: a(x) = The thermal conductivity coefficient. Half-way through the
plate there is another material with 10 times higher thermal conductivity as
the material to the left. So it will lead heat 10 times better and get 1/10th
as hot.

### Problem 4

[Analogy between thermal conductivity and
mechanic](http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/lectures/fem1.pdf#page=6&zoom=133,0,616)
(In Firefox the link will go to the correct page and position):
a ↔ EA
j ↔ N
g ↔ P
f ↔ KxA

[U, A, b] = MyPoissonSolver(p, t, e, @EqData4, @BdryData4);
plot(p,U)

### FEM1 Intro - Stången/The Rod

[Stången: Introduktion till MyPoisson och Dugga
2](http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/lectures/fem1-intro.pdf)

#### [Example 1](http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/lectures/fem1-intro.pdf#page=1&zoom=133,0,145)

L=1; % the length of the rod
n=101; % the number of points, n-1 is the number of intervals
p=linspace(0,L,n);
t=[1:n-1; 2:n; ones(1,n-1)];
e=[1 n; 1 2];
[U,A,b]=MyPoissonSolver(p,t,e,@EqDataStang11, @BdryDataStang11);
plot(p,U)
dL=U(end) % the extension of the rod

#### [Example 2](http://www.math.chalmers.se/Math/Grundutb/CTH/mve255/1213/lectures/fem1-intro.pdf#page=2&zoom=133,0,85)

Radius as a parameter:

L=1; % the length of the rod
n=101; % the number of points, n-1 is the number of intervals
p=linspace(0,L,n);
t=[1:n-1; 2:n; ones(1,n-1)];
e=[1 n; 1 2];

P=10; % N force
r=0.01; % m radius
EqData=@(x,tag) EqDataStang12(x,tag,r);
BdryData=@(x,tag) BdryDataStang12(x,tag,P);
[U,A,b]=MyPoissonSolver(p,t,e,EqData,BdryData);
dL=U(end) % the extension of the rod
plot(p,U)

Plot a table with the two columns *radius of rod* and *extension*:

P=10; % N
BdryData=@(x,tag)BdryDataStang12(x,tag,P);
rr=[]; dL=[];
for r=0.01:.001:0.03
EqData=@(x,tag)EqDataStang12(x,tag,r);
[U,A,b]=MyPoissonSolver(p,t,e,EqData,BdryData);
dL=[dL;U(end)]; % save the extension in a column matrix
rr=[rr;r]; % save the radius in a column matrix
end
[rr,dL] % display a table

If we want the rod to extend 0.001 units, we can use the function
[stangfunk](exercise4/stangfunk.m) and solve it using
[newton](exercise2/newton.m) to get the most optimal radius of the rod:

R=newton(@stangfunk,.01,1e-6)

## Dugga 2

### Question 5

Determine the second degree taylor series to the function `(x^2 - y - 1)^(9/4)`
around the coordinate (-1, -1).

Calculate the partial derivates with Mathematica:

Clear[f];
f[x_, y_] := ((x^2 - y - 1)^(9/4));
D[D[f[x, y], y], y] /. x -> -1 /. y -> -1
D[f[x, y], x] /. x -> -1 /. y -> -1

Answer: `1 - 9/2*(x+1) - 9/4*(y+1) + 63/8*(x+1)^2 + 45/8*(x+1)(y+1) +
45/32*(y+1)^2`

### Question 10

The rode is bolted in its left edge and free in its right.
Radius: `r(x) = R(1 + h*x/L * (1 - x/L))`
L = 1 m
E = 1e7 N/m^2
P = 10 N
R = 0.01 m
n = 101 node points

Value of *h* that gives U(L) = 1 mm?

*h* can be calculated using the file
[stangfunkD2Q10.m](dugga2/stangfunkD2Q10.m) in the following way:

>> R=newton(@stangfunkD2Q10, 2, 1e-6)
R =
5.8038

Answer: `5.8`

## Exercise 5

Start PDE Toolbox in Matlab with `pdetool` and open [pde.m](exercise5/pde.m).
The documentation/hand-in/description can be read in
[documentation.pdf](exercise5/documentation.pdf) or on [Google
Drive](https://docs.google.com/document/d/1WQ13IPAUOE0-u1z9ZhJew6XymgLF37KINN0MEnMR0C0/edit?usp=sharing)
where it's also possible for anybody to leave comments.