Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/matplotlib/AnatomyOfMatplotlib

Anatomy of Matplotlib -- tutorial developed for the SciPy conference
https://github.com/matplotlib/AnatomyOfMatplotlib

Last synced: 3 months ago
JSON representation

Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Awesome Lists containing this project

README

        

# Introduction
This tutorial is a complete re-imagining of how one should teach users
the matplotlib library. Hopefully, this tutorial may serve as inspiration
for future restructuring of the matplotlib documentation. Plus, I have some
ideas of how to improve this tutorial.

Please fork and contribute back improvements! Feel free to use this tutorial
for conferences and other opportunities for training.

The tutorial can be viewed on [nbviewer](http://nbviewer.jupyter.org):
* [Part 0: Introduction To NumPy](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part0-Intro2NumPy.ipynb)
* [Part 1: Overview of Matplotlib](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part1-Figures_Subplots_and_layouts.ipynb)
* [Part 2: Plotting Methods](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb)
* [Part 3: How To Speak MPL](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part3-HowToSpeakMPL.ipynb)
* [Part 4: Limits, Legends, and Layouts](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part4-Limits_Legends_and_Layouts.ipynb)
* [Part 5: Artists](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part5-Artists.ipynb)
* [Part 6: mpl_toolkits](http://nbviewer.jupyter.org/github/matplotlib/AnatomyOfMatplotlib/blob/master/AnatomyOfMatplotlib-Part6-mpl_toolkits.ipynb)

# Installation
All you need is matplotlib (v1.5 or greater) and jupyter installed.
You can use your favorite Python package installer for this:

```bash
conda install matplotlib jupyter
git clone https://github.com/matplotlib/AnatomyOfMatplotlib.git
cd AnatomyOfMatplotlib
jupyter notebook
```
A browser window should appear and you can verify that everything works as expected by clicking on the `Test Install.ipynb` notebook. There, you will see a "code cell" that you can execute. Run it, and you should see a very simple line plot, indicating that all is well.