Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/matrix-profile-foundation/matrixprofile
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms, accessible to everyone.
https://github.com/matrix-profile-foundation/matrixprofile
algorithms anomaly-detection clustering data-mining data-science hacktoberfest matrixprofile motif-discovery python python2 python3 segmentation time-series time-series-analysis
Last synced: 27 days ago
JSON representation
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms, accessible to everyone.
- Host: GitHub
- URL: https://github.com/matrix-profile-foundation/matrixprofile
- Owner: matrix-profile-foundation
- License: apache-2.0
- Created: 2019-07-22T00:33:37.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-11-29T11:51:15.000Z (12 months ago)
- Last Synced: 2024-10-07T20:54:34.127Z (about 1 month ago)
- Topics: algorithms, anomaly-detection, clustering, data-mining, data-science, hacktoberfest, matrixprofile, motif-discovery, python, python2, python3, segmentation, time-series, time-series-analysis
- Language: Python
- Homepage: https://matrixprofile.org
- Size: 6.69 MB
- Stars: 361
- Watchers: 18
- Forks: 62
- Open Issues: 33
-
Metadata Files:
- Readme: README.rst
- Contributing: docs/contributing.rst
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-time-series - Matrix Profile analysis methods in Python for clustering, pattern mining, and anomaly detection
- awesome-time-series - matrixprofile
- awesome-TS-anomaly-detection - MatrixProfile - 2.0 | :heavy_check_mark: (Related Software / Time-Series Analysis)
- awesome-quant - matrixprofile - Time series data mining library built on top of the novel Matrix Profile data structure and algorithms. (R / Time Series)
README
.. image:: https://matrixprofile.org/static/img/mpf-logo.png
:target: https://matrixprofile.org
:height: 300px
:scale: 50%
:alt: MPF Logo
|
|
.. image:: https://img.shields.io/pypi/v/matrixprofile.svg
:target: https://pypi.org/project/matrixprofile/
:alt: PyPI Version
.. image:: https://pepy.tech/badge/matrixprofile
:target: https://pepy.tech/project/matrixprofile
:alt: PyPI Downloads
.. image:: https://img.shields.io/conda/vn/conda-forge/matrixprofile.svg
:target: https://anaconda.org/conda-forge/matrixprofile
:alt: Conda Version
.. image:: https://img.shields.io/conda/dn/conda-forge/matrixprofile.svg
:target: https://anaconda.org/conda-forge/matrixprofile
:alt: Conda Downloads
.. image:: https://codecov.io/gh/matrix-profile-foundation/matrixprofile/branch/master/graph/badge.svg
:target: https://codecov.io/gh/matrix-profile-foundation/matrixprofile
:alt: Code Coverage
.. image:: https://dev.azure.com/conda-forge/feedstock-builds/_apis/build/status/matrixprofile-feedstock?branchName=master
:target: https://dev.azure.com/conda-forge/feedstock-builds/_build/latest?definitionId=11637&branchName=master
:alt: Azure Pipelines
.. image:: https://api.travis-ci.com/matrix-profile-foundation/matrixprofile.svg?branch=master
:target: https://travis-ci.com/matrix-profile-foundation/matrixprofile
:alt: Build Status
.. image:: https://img.shields.io/conda/pn/conda-forge/matrixprofile.svg
:target: https://anaconda.org/conda-forge/matrixprofile
:alt: Platforms
.. image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg
:target: https://opensource.org/licenses/Apache-2.0
:alt: License
.. image:: https://img.shields.io/twitter/follow/matrixprofile.svg?style=social
:target: https://twitter.com/matrixprofile
:alt: Twitter
.. image:: https://img.shields.io/discord/589321741277462559?logo=discord
:target: https://discordapp.com/invite/sBhDNXT
:alt: Discord
.. image:: https://joss.theoj.org/papers/10.21105/joss.02179/status.svg
:target: https://doi.org/10.21105/joss.02179
:alt: JOSSDOI
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3789780.svg
:target: https://doi.org/10.5281/zenodo.3789780
:alt: ZenodoDOIMatrixProfile
----------------
NOTE: THIS LIBRARY IS NOT ACTIVELY SUPPORTED. PLEASE CHECK OUT THE TD AMERITRADE STUMPY LIBRARY INSTEAD: https://github.com/TDAmeritrade/stumpyhttps://github.com/TDAmeritrade/stumpyMatrixProfile is a Python 3 library, brought to you by the `Matrix Profile Foundation `_, for mining time series data. The Matrix Profile is a novel data structure with corresponding algorithms (stomp, regimes, motifs, etc.) developed by the `Keogh `_ and `Mueen `_ research groups at UC-Riverside and the University of New Mexico. The goal of this library is to make these algorithms accessible to both the novice and expert through standardization of core concepts, a simplistic API, and sensible default parameter values.
In addition to this Python library, the Matrix Profile Foundation, provides implementations in other languages. These languages have a pretty consistent API allowing you to easily switch between them without a huge learning curve.
* `tsmp `_ - an R implementation
* `go-matrixprofile `_ - a Golang implementationPython Support
----------------
Currently, we support the following versions of Python:* 3.5
* 3.6
* 3.7
* 3.8
* 3.9Python 2 is no longer supported. There are earlier versions of this library that support Python 2.
Installation
------------
The easiest way to install this library is using pip or conda. If you would like to install it from source, please review the `installation documentation `_ for your platform.Installation with pip
.. code-block:: bash
pip install matrixprofile
Installation with conda
.. code-block:: bash
conda config --add channels conda-forge
conda install matrixprofileGetting Started
---------------
This article provides introductory material on the Matrix Profile:
`Introduction to Matrix Profiles `_This article provides details about core concepts introduced in this library:
`How To Painlessly Analyze Your Time Series `_Our documentation provides a `quick start guide `_, `examples `_ and `api `_ documentation. It is the source of truth for getting up and running.
Algorithms
----------
For details about the algorithms implemented, including performance characteristics, please refer to the `documentation `_.
------------
Getting Help
------------
We provide a dedicated `Discord channel `_ where practitioners can discuss applications and ask questions about the Matrix Profile Foundation libraries. If you rather not join Discord, then please open a `Github issue `_.------------
Contributing
------------
Please review the `contributing guidelines `_ located in our documentation.---------------
Code of Conduct
---------------
Please review our `Code of Conduct documentation `_.---------
Citations
---------
All proper acknowledgements for works of others may be found in our `citation documentation `_.------
Citing
------
Please cite this work using the `Journal of Open Source Software article `_.Van Benschoten et al., (2020). MPA: a novel cross-language API for time series analysis. Journal of Open Source Software, 5(49), 2179, https://doi.org/10.21105/joss.02179
.. code:: bibtex
@article{Van Benschoten2020,
doi = {10.21105/joss.02179},
url = {https://doi.org/10.21105/joss.02179},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {49},
pages = {2179},
author = {Andrew Van Benschoten and Austin Ouyang and Francisco Bischoff and Tyler Marrs},
title = {MPA: a novel cross-language API for time series analysis},
journal = {Journal of Open Source Software}
}