Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/matrixji/annb
Approximate Nearest Neighbor Benchmark
https://github.com/matrixji/annb
anns benchmarks cuda gpu
Last synced: 29 days ago
JSON representation
Approximate Nearest Neighbor Benchmark
- Host: GitHub
- URL: https://github.com/matrixji/annb
- Owner: matrixji
- License: apache-2.0
- Created: 2023-06-06T03:27:27.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-14T12:05:58.000Z (about 1 year ago)
- Last Synced: 2024-03-14T13:43:30.098Z (11 months ago)
- Topics: anns, benchmarks, cuda, gpu
- Language: Python
- Homepage:
- Size: 113 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ANNB: Approximate Nearest Neighbor Benchmark
[](https://pypi.python.org/pypi/annb)
Note: This is a work in progress. The API/CLI is not stable yet.
## Installation
```bash
pip install annb# install vector search index/client you may need for benchmark
# e.g install faiss for run faiss index benchmark
```## Usage
### CLI Usage
#### Run Benchmark
##### start first benchmark with a randome dataset.
Just run `annb-test` to start your first benchmark with a random dataset.
```bash
annb-test
```It will produce a result like this:
```plain
❯ annb-test
... some logs ...BenchmarkResult:
attributes:
query_args: [{'nprobe': 1}]
topk: 10
jobs: 1
loop: 5
step: 10
name: Test
dataset: .annb_random_d256_l2_1000.hdf5
index: Test
dim: 256
metric_type: MetricType.L2
index_args: {'index': 'ivfflat', 'nlist': 128}
started: 2023-08-14 13:03:40durations:
training: 1 items, 1000 total, 1490.03266ms
insert: 1 items, 1000 total, 132.439627ms
query:
nprobe=1,recall=0.2173 -> 1000 items, 18.615083ms, 53719.878659686874qps, latency=0.18615083ms, p95=0.31939ms, p99=0.41488ms
```This is a simple benchmark test with default index(faiss) with random l2 dataset.
If you wants to generate more data or with some different specifications for the dataset, you could see below options:
- --index-dim The dimension of the index, default is 256
- --index-metric-type Index metric type, l2 or ip, default is l2
- --topk TOPK topk used for query, default is 10
- --step STEP the query step, default annb will query 10 items per query, you could set it to 0 for query all items in one query (similar like batch for ann-benchmarks)
- --batch batch mode, alias --step 0
- --count COUNT the total number of items in the dataset, default is 1000##### run benchmark with a specific dataset
You could also use ann-benchmarks's [dataset](https://github.com/erikbern/ann-benchmarks#data-sets) to run benchmark. download them locally and run benchmark with `--dataset` option.
```bash
annb-test --dataset sift-128-euclidean.hdf5
```##### run benchmark with query args
You mary benchmark with different query args, e.g. different nprobe for faiss ivfflat index. you could try `--query-args` option.```bash
annb-test --query-args nprobe=10 --query-args nprobe=20
```will output below result:
```plain
durations:
training: 1 items, 1000 total, 1548.84968ms
insert: 1 items, 1000 total, 143.402532ms
query:
nprobe=1,recall=0.2173 -> 1000 items, 20.074236ms, 49815.09632545916qps, latency=0.20074235999999998ms, p95=0.332276ms, p99=0.455525ms
nprobe=10,recall=0.5221 -> 1000 items, 49.141931ms, 20349.2207092961qps, latency=0.49141931ms, p95=0.722628ms, p99=0.818012ms
nprobe=20,recall=0.6861 -> 1000 items, 69.284072ms, 14433.331805324606qps, latency=0.69284072ms, p95=1.126946ms, p99=1.350359ms
```##### run multiple benchmarks with config file
You may run multiple benchmarks with different index and dataset. you could use `--run-file` run benchmarks from a config file.Below is a example config file:
config.yaml
```yaml
default:
index_factory: annb.anns.faiss.indexes.index_under_test_factory
index_factory_args: {}
index_name: Test
dataset: gist-960-euclidean.hdf5
topk: 10
step: 10
jobs: 1
loop: 2
result: output.pthruns:
- name: faiss-gist960-gpu-ivfflat
index_args:
gpu: yes
index: ivfflat
nlist: 1024
query_args:
- nprobe: 1
- nprobe: 16
- nprobe: 256
- name: faiss-gist960-gpu-ivfpq8
index_args:
gpu: yes
index: ivfpq
nlist: 1024
query_args:
- nprobe: 1
- nprobe: 16
- nprobe: 256
```Explanation for above config file:
- The default section is the default config for all benchmarks.
- The config keys are generally same as the options for `annb-test` command. e.g. `index_factory` is same as `--index-factory`.
- You could define multiple benchmarks in `runs` section. and each run config will override the default config. In this example, we define use gist-960-euclidean.hdf5 as dataset, so it will use this dataset for all benchmarks. and we use different index and query args for each benchmark. for index_args, we use ivfflat(nlist=1024) and ivfpq(nlist=1024) as two benchmark series. and for query_args, we use nprobe=1,16,256 for each benchmark. That means we will run 6 benchmarks in total, each series will run 3 benchmarks with different nprobe.
- The result will be saved to output.pth file by default setting. Actually, each benchmark series will save to a separate file. so in this example, we will get two files: `output-1.pth` and `output-2.pth`. you could use `annb-report` to view them.##### more options
You could use `annb-test --help` to see more options.
```bash
❯ annb-test --help
```#### Check Benchmark Results
The `annb-report` is use to view benchmark results as plain/csv text, or export them to Chart graphic.
```bash
annb-report --help
```##### examples for view/export benchmark results
view benchmark results as plain text
```bash
annb-report output.pth
```view benchmark results as csv text
```bash
annb-report output.pth --format csv
```export benchmark results to chart graphic(multiple series)
```bash
annb-report output.pth --format png --output output.png output-1.pth output-2.pth
```