Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mattansb/machine-learning-for-psychologists
Lesson files used in the Machine Learning foR Psychologists
https://github.com/mattansb/machine-learning-for-psychologists
bgu-university caret psychologists rstats statistics tau-university teaching-materials tidymodels
Last synced: 3 months ago
JSON representation
Lesson files used in the Machine Learning foR Psychologists
- Host: GitHub
- URL: https://github.com/mattansb/machine-learning-for-psychologists
- Owner: mattansb
- License: other
- Created: 2023-06-03T17:48:40.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-09-03T06:52:12.000Z (5 months ago)
- Last Synced: 2024-10-11T18:23:17.801Z (4 months ago)
- Topics: bgu-university, caret, psychologists, rstats, statistics, tau-university, teaching-materials, tidymodels
- Language: R
- Homepage:
- Size: 181 KB
- Stars: 4
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
- License: LICENSE
Awesome Lists containing this project
README
---
output: github_document
---```{r setup, include=FALSE}
library(knitr)opts_chunk$set(echo = TRUE)
```# Machine Learning foR Psychologists
[![](https://img.shields.io/badge/Open%20Educational%20Resources-Compatable-brightgreen)](https://creativecommons.org/about/program-areas/education-oer/)
[![](https://img.shields.io/badge/CC-BY--NC%204.0-lightgray)](http://creativecommons.org/licenses/by-nc/4.0/)
[![](https://img.shields.io/badge/Language-R-blue)](http://cran.r-project.org/)*Last updated `r Sys.Date()`.*
This Github repo contains all lesson files for *Machine Learning in R*. The goal is to impart students with the basic tools to construct, evaluate and compare various **machine learning models, using [`caret`](https://topepo.github.io/caret/)**. (Materials developed with Yael Bar-Shachar.)
These topics were taught in the graduate-level course ***Machine Learning for Psychologists*** (Psych Dep., Ben-Gurion University of the Negev; Psych Dep., Tel-Aviv University). This course assumes basic competence in R (importing, regression modeling, plotting, etc.), along the lines of [*Practical Applications in R for Psychologists*](https://github.com/mattansb/Practical-Applications-in-R-for-Psychologists).
**Notes:**
- This repo contains only materials relating to *Practical Applications in R*, and does not contain any theoretical or introductory materials.
- Please note that some code does not work *on purpose*, to force students to learn to debug.## Setup
```{r, echo=FALSE}
extract_pkgs <- function(fl) {
if (length(fl) == 1) {
txt <- read.delim(fl, header = FALSE)[[1]] |>
paste0(collapse = "\n")
pkg_lib <- stringr::str_extract_all(txt, pattern = "(?<=library\\().{1,}(?=\\))")
pkg_req <- stringr::str_extract_all(txt, pattern = "(?<=require\\().{1,}(?=\\))")
pkg_name <- stringr::str_extract_all(txt, pattern = "[a-z|A-Z|0-9]{1,}(?=\\:\\:)")
pkgs <- c(pkg_lib, pkg_req, pkg_name)
} else if (length(fl) > 1) {
pkgs <- sapply(fl, extract_pkgs)
}
pkgs |>
unlist(recursive = TRUE) |>
unique()
}make_pkg_table <- function(pkgs) {
pkgs <- pkgs[sapply(pkgs, function(x) length(x) > 0)]
ps <- sapply(pkgs, function(x){
paste0(
glue::glue("[`{x}`](https://CRAN.R-project.org/package={x})"),
collapse = ", "
)
})
glue::glue("|[{folder}](/{folder})|{ps}|\n\n",
folder = names(pkgs)) |>
c("|Lesson|Packages|\n|----|----|\n", i2 = _) |> # header
paste0(collapse = "")
}
```You will need:
1. A fresh installation of [**`R`**](https://cran.r-project.org/) (preferably version 4.2 or above).
2. [RStudio IDE](https://www.rstudio.com/products/rstudio/download/) (optional, but recommended).
3. The following packages, listed by lesson:```{r, echo=FALSE, message=FALSE, warning=FALSE}
r_list <- list.files(pattern = ".(R|r)$", recursive = TRUE, full.names = TRUE)
r_list <- r_list[!stringr::str_detect(r_list, pattern = "(SOLUTION|logo)")]
r_list <- r_list[stringr::str_detect(r_list, pattern = "^./[0-9]")]lesson_names <- stringr::str_extract(r_list, pattern = "(?<=(/)).{1,}(?=(/))")
r_list <- split(r_list, lesson_names)
pkgs <- lapply(r_list, extract_pkgs)
print_pkgs <- make_pkg_table(pkgs)
````r print_pkgs`
You can install all the packages used by running:
```{r echo=FALSE, comment = "", warning=FALSE}
pkgs <- pkgs |>
unlist(recursive = TRUE) |>
unique() |> sort()cat("# in alphabetical order:")
capture.output(cat("pkgs <-", capture.output(dput(pkgs)), fill = 80)) |>
styler::style_text()cat("install.packages(pkgs, dependencies = TRUE)")
```Package Versions
The package versions used here:
```{r, echo=FALSE}
packinfo <- installed.packages(fields = c("Package", "Version"))get_src <- function(pkg) {
pd <- packageDescription(pkg)
if (is.null(src <- pd$Repository)) {
if (!is.null(src <- pd$GithubRepo)) {
src <- paste0("Github: ",pd$GithubUsername,"/",src)
} else {
src <- "Dev"
}
}
return(src)
}V <- packinfo[pkgs,"Version"]
src <- sapply(pkgs, get_src)
# setNames(paste0(V, " (", src,")"), pkgs)v_info <- paste0(glue::glue(" - `{pkgs}` {V} (*{src}*)"), collapse = "\n")
````r v_info`