Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/matteofasulo/paris-euler
Euler Team - Social Network Analysis of Paris Transportation
https://github.com/matteofasulo/paris-euler
data-science jupyter-notebook map matplotlib network-analysis networkx openstreetmap pandas python social-network-analysis transport
Last synced: 6 days ago
JSON representation
Euler Team - Social Network Analysis of Paris Transportation
- Host: GitHub
- URL: https://github.com/matteofasulo/paris-euler
- Owner: MatteoFasulo
- License: mit
- Created: 2022-05-17T08:56:55.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-06-24T15:04:51.000Z (7 months ago)
- Last Synced: 2024-11-19T08:10:37.953Z (2 months ago)
- Topics: data-science, jupyter-notebook, map, matplotlib, network-analysis, networkx, openstreetmap, pandas, python, social-network-analysis, transport
- Language: Jupyter Notebook
- Homepage:
- Size: 55.9 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Multiplex Network Analysis Public Transportation
## University Project
Social Network Analysis Project### Paper
The paper associated to this project is available [here](https://github.com/MatteoFasulo/Paris-Euler/blob/main/Multiplex_Network_Analysis.pdf)### Multiplex Class
The `Multiplex` Class written in python is a nx.Graph wrapper for creating multi-layer networks and includes:
* Adding layers to a multiplex
* Linking the layers by proximity using [Haversine formula](https://en.wikipedia.org/wiki/Haversine_formula).
* Writing networks back to NetworkX
* Summarizing a multilayer network### Maps
* [Stations and roads](https://matteofasulo.github.io/Paris-Euler/maps/france.html)
* [Public transport lines](https://matteofasulo.github.io/Paris-Euler/maps/france_transport.html)
> **Tip:** Our map can be modified using the draw icons in top-left corner and then exported as GeoJSON file through the `export` button### Datasets
- The GeoJSON file is available at [ComplexNetTSP GitHub](https://github.com/ComplexNetTSP/MultilayerParis) or in `geojson` folder.
> **Error:** The file cannot be viewed since has no escape character at the end of each line. Download it.### Libraries
| Name | Description |
| ------------- | ------------------------------ |
| [Numpy] | package for scientific computing with Python.
| [Pandas]| fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.
| [Folium]| folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js library.
| [Os]| this module provides a portable way of using operating system dependent functionality.
| [Json]| the json library can parse JSON from strings or files.
| [Math]| access to the mathematical functions defined by the C standard.
| [Random]| pseudo-random number generators for various distributions.
| [NetworkX]| package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.
| [PowerLaw]| package for Analysis of Heavy-Tailed Distributions
| [EmpiricalDist]| library that represents empirical distribution functions.
| [Matplotlib]| library for creating static, animated, and interactive visualizations in Python.
| [Plotly]| graphing library makes interactive, publication-quality graphs.
| [Kaleido]| cross-platform library for generating static images (e.g. png, svg, pdf, etc.) for web-based visualization libraries.
| [MPL Toolkits]| matplotlib module for 3d plots.### Classes:
| Class | Description |
| -------------------------- | ------------------------------ |
| `ParisTransportation` |GeoJSON preprocessing|
| `MapMaker(ParisTransportation)` |Nodes map creation|
| `TransportMap` |Public transport line creation + road network|
| `Multiplex` |Thin nx.Graph wrapper for multi-layer networks|
| `LayeredNetworkGraph` |3D plot using GraphViz of public transport networks|
----[os]:
[json]:
[Numpy]:
[Pandas]:
[Folium]:
[Math]:
[Random]:
[NetworkX]:
[PowerLaw]:
[EmpiricalDist]:
[Matplotlib]:
[Plotly]:
[Kaleido]:
[MPL Toolkits]: