Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/matthieumeo/sphericov
Companion Jupyter notebook of the paper "Functional Estimation of Anisotropic Covariance and Autocovariance Operators on the Sphere"
https://github.com/matthieumeo/sphericov
covariance-kernel functional-data-analysis jupyter-notebook nonparametric-regression python3 tikhonov-regularization
Last synced: 13 days ago
JSON representation
Companion Jupyter notebook of the paper "Functional Estimation of Anisotropic Covariance and Autocovariance Operators on the Sphere"
- Host: GitHub
- URL: https://github.com/matthieumeo/sphericov
- Owner: matthieumeo
- License: mit
- Created: 2021-12-23T14:16:05.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-09-23T07:44:20.000Z (over 2 years ago)
- Last Synced: 2024-12-03T16:43:54.639Z (2 months ago)
- Topics: covariance-kernel, functional-data-analysis, jupyter-notebook, nonparametric-regression, python3, tikhonov-regularization
- Language: Jupyter Notebook
- Homepage: https://arxiv.org/abs/2112.12694
- Size: 3.45 MB
- Stars: 1
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
README
Instructions
############This repository hosts the companion Jupyter notebook for the paper `"Functional Estimation of Anisotropic Covariance and Autocovariance Operators on the Sphere" `_, from Alessia Caponera, Julien Fageot, Matthieu Simeoni and Victor Panaretos.
The code was written by `Matthieu Simeoni `_.
Scope
=====This Jupyter notebook allows to reproduce the simulations, numerical experiments and plots of Section 6 of the paper.
Installation
============The notebook requires Python 3.9 or greater. It is developed and tested on x86_64 systems running MacOS and Linux.
Dependencies
------------The notebook extra dependencies are listed in the file ``requirements.txt``.
It is recommended to install those extra dependencies in an Anaconda environment `Miniconda `_ or
`Anaconda `_... code-block:: bash
>> conda create -n sphericov python=3.9
>> conda activate sphericov
>> pip install -r requirements.txtRun the code
------------Once the dependencies installed, you can run the companion notebook by executing the following commands:
.. code-block:: bash
>> git clone https://github.com/matthieumeo/sphericov
>> cd /
>> conda activate sphericov
>> jupyter lab companion_nb.ipynb