Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mauriciovazquezm/machinelearning_course_spring2023
Machine Learning course tasks focused on the implementation of the ML algorithms using libraries such as Numpy, Pandas, etc.
https://github.com/mauriciovazquezm/machinelearning_course_spring2023
machine-learning machine-learning-algorithms numpy python r-language
Last synced: 3 days ago
JSON representation
Machine Learning course tasks focused on the implementation of the ML algorithms using libraries such as Numpy, Pandas, etc.
- Host: GitHub
- URL: https://github.com/mauriciovazquezm/machinelearning_course_spring2023
- Owner: MauricioVazquezM
- Created: 2023-06-12T19:34:10.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-19T03:01:29.000Z (7 months ago)
- Last Synced: 2024-11-13T15:16:38.394Z (2 months ago)
- Topics: machine-learning, machine-learning-algorithms, numpy, python, r-language
- Language: Jupyter Notebook
- Homepage:
- Size: 16.1 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# MachineLearning_Course_Spring2023
## Team
- [Guillermo Arredondo](https://github.com/guillermoArr), student of a double BS degree in Data Science and Applied Mathematics at ITAM.
- [Iñaki Fernandez](https://github.com/Inaki-FF), student of a BS degree in Data Science at ITAM.
- [Mauricio Vazquez](https://github.com/MauricioVazquezM), student of a double BS degree in Data Science and Actuarial Science at ITAM.## Repository Content
- [Naive Bayes Algorithm Implementation](NAIVE_BAYES)
- [Naive Bayes Notebook](NAIVE_BAYES/NaiveBayes_notebook.ipynb)
- [Naive Bayes Summary](NAIVE_BAYES/README.md)
- [Linear Discriminant Analysis (LDA)](LDA)
- [LDA Notebook](LDA/LDA.ipynb)
- [LDA Summary](LDA/README.md)
- [Perceptron](PERCEPTRON)
- [Perceptron Notebook](PERCEPTRON/Perceptron.ipynb)
- [Perceptron Summary](PERCEPTRON/README.md)
- [Gradient Descent](GRADIENT_DESCENT)
- [Gradient Descent Notebook](GRADIENT_DESCENT/Gradient_Descent.ipynb)
- [Gradient Descent Summary](GRADIENT_DESCENT/README.md)
- [Linear Regression](LINEAR_REGRESSION)
- [Linear Regression Notebook](LINEAR_REGRESSION/Linear_Regression.ipynb)
- [Lineas Regression Summary](LINEAR_REGRESSION/README.md)
- [Support Vector Machine (SVM)](SVM)
- [Kernels Notebook](SVM/Kernels.ipynb)
- [SVM Summary](SVM/README.md)
- [Neural Network](NEURAL_NETWORK)
- [Neural Network Notebook](NEURAL_NETWORK/Neural_Network.ipynb)
- [Neural Network Summary](NEURAL_NETWORK/README.md)
- [Random Forest](RANDOM_FOREST)
- [Random Forest Notebook](RANDOM_FOREST/Random_Forest.ipynb)
- [Random Forest Summary](RANDOM_FOREST/README.md)
- [Clustering](CLUSTERING)
- [Optics Notebook](CLUSTERING/Optics.ipynb)
- [Optics Summary](CLUSTERING/README.md)
- [Reinforcement Learning](REINFORCEMENT_LEARNING)
- [Centipede Reinforcement Learning Notebook](REINFORCEMENT_LEARNING/Centipede_RL.ipynb)
- [Reinforcement Learning Summary](REINFORCEMENT_LEARNING/README.md)
## Course objective
"Gain an in-depth understanding of some of the major machine learning techniques: its algorithms, theory and application. In the same way, that he becomes familiar, through practice, with the procedure of elaboration of a model."
-[Salvador Marmol](https://github.com/salvadormarmol), Machine Learning course professor
## Course Syllabus
- Machine Learning concepts
- Supervised learning
- Basic Bayes method
- K-Nearest neighbors
- Linear regression
- Neural network
- Support vector machine
- Decision tree
- Models evaluation and learning theory
- Unsupervised learning
- A-priori algorithm
- K-means clustering
- Hierarchical clustering
- Density-Based clustering
- Dimensionality reduction method
- PCA
- T-SNE
- Recomendation system
- Model Assemblies
- Random forest
- Bagging
- Boosting
- Deep Learning
- Convolutional neural network
- Reinforcement Learning
- Deep reinforcement learning## Bibliography
- Murphy, K. (2022) Probabilistic Machine Learning: An Introduction. Cambridge, MA: MIT.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics, 2nd edition.
- Bishop, C. M. (2006) Pattern Recognition and Machine Learning, New York, N. Y.: Springer Science + Business Media.
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. (2017) Deep Learning. Cambridge, MA: MIT.
- Sutton, Richard S., and Andrew G. Barto. (2018) Reinforcement Learning: An Introduction. Cambridge, MA: MIT, 2nd edition.