Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/maxmouchet/atlas-trends-demo

Demonstration of the RIPE Atlas Trends API for RTT time series clustering.
https://github.com/maxmouchet/atlas-trends-demo

api clustering ripe-atlas rtt time-series

Last synced: about 1 month ago
JSON representation

Demonstration of the RIPE Atlas Trends API for RTT time series clustering.

Awesome Lists containing this project

README

        

# Atlas Trends API demonstration

![Example Segmentation](segmentation.png)

## Introduction

The Atlas Trends API is an implementation of a novel method to cluster RTT time series using nonparametric Bayesian models. The API allows producing humanlike segmentation of [RIPE Atlas](http://atlas.ripe.net/) RTT time series.

This repository contains the following Python notebooks demonstrating the API usage:

Name | Description | Online Notebook
:----|:------------|:-----------------
Atlas Trends API | Overview of the API | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/maxmouchet/atlas-trends-demo/blob/master/notebooks/Atlas%20Trends%20API.ipynb)

## Citation

M. Mouchet, S. Vaton, T. Chonavel, E. Aben and J. D. Hertog, "Large-Scale Characterization and Segmentation of Internet Path Delays With Infinite HMMs," in [_IEEE Access_](https://ieeexplore.ieee.org/document/8964300), vol. 8, pp. 16771-16784, 2020.

```bibtex
@article{mouchet2019large,
author={M. {Mouchet} and S. {Vaton} and T. {Chonavel} and E. {Aben} and J. {Den Hertog}},
journal={IEEE Access},
title={Large-Scale Characterization and Segmentation of Internet Path Delays With Infinite HMMs},
year={2020},
volume={8},
pages={16771-16784},
doi={10.1109/ACCESS.2020.2968380},
ISSN={2169-3536}
}
```

## Getting Started

You can run the notebooks on Google Colab by following the links at the top, or locally by running the following in a terminal:

```bash
git clone https://github.com/maxmouchet/atlas-trends-demo.git
cd atlas-trends-demo
python3 -m venv trends-env; source trends-env/bin/activate
pip install -r requirements.txt
jupyter lab
```