Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/maxmouchet/atlas-trends-demo
Demonstration of the RIPE Atlas Trends API for RTT time series clustering.
https://github.com/maxmouchet/atlas-trends-demo
api clustering ripe-atlas rtt time-series
Last synced: about 1 month ago
JSON representation
Demonstration of the RIPE Atlas Trends API for RTT time series clustering.
- Host: GitHub
- URL: https://github.com/maxmouchet/atlas-trends-demo
- Owner: maxmouchet
- License: mit
- Created: 2019-04-16T15:49:24.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T03:24:21.000Z (about 2 years ago)
- Last Synced: 2024-12-01T12:47:18.600Z (about 1 month ago)
- Topics: api, clustering, ripe-atlas, rtt, time-series
- Language: Jupyter Notebook
- Homepage:
- Size: 163 KB
- Stars: 12
- Watchers: 7
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Atlas Trends API demonstration
![Example Segmentation](segmentation.png)
## Introduction
The Atlas Trends API is an implementation of a novel method to cluster RTT time series using nonparametric Bayesian models. The API allows producing humanlike segmentation of [RIPE Atlas](http://atlas.ripe.net/) RTT time series.
This repository contains the following Python notebooks demonstrating the API usage:
Name | Description | Online Notebook
:----|:------------|:-----------------
Atlas Trends API | Overview of the API | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/maxmouchet/atlas-trends-demo/blob/master/notebooks/Atlas%20Trends%20API.ipynb)## Citation
M. Mouchet, S. Vaton, T. Chonavel, E. Aben and J. D. Hertog, "Large-Scale Characterization and Segmentation of Internet Path Delays With Infinite HMMs," in [_IEEE Access_](https://ieeexplore.ieee.org/document/8964300), vol. 8, pp. 16771-16784, 2020.
```bibtex
@article{mouchet2019large,
author={M. {Mouchet} and S. {Vaton} and T. {Chonavel} and E. {Aben} and J. {Den Hertog}},
journal={IEEE Access},
title={Large-Scale Characterization and Segmentation of Internet Path Delays With Infinite HMMs},
year={2020},
volume={8},
pages={16771-16784},
doi={10.1109/ACCESS.2020.2968380},
ISSN={2169-3536}
}
```## Getting Started
You can run the notebooks on Google Colab by following the links at the top, or locally by running the following in a terminal:
```bash
git clone https://github.com/maxmouchet/atlas-trends-demo.git
cd atlas-trends-demo
python3 -m venv trends-env; source trends-env/bin/activate
pip install -r requirements.txt
jupyter lab
```