Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/maxreiss123/gep_sbp_
Gene Expression Programming for symbolic regression in Julia
https://github.com/maxreiss123/gep_sbp_
explainable-ai explainable-ml julia machine-learning scientific-machine-learning symbolic-regression
Last synced: 2 months ago
JSON representation
Gene Expression Programming for symbolic regression in Julia
- Host: GitHub
- URL: https://github.com/maxreiss123/gep_sbp_
- Owner: maxreiss123
- Created: 2024-09-04T16:03:12.000Z (4 months ago)
- Default Branch: master
- Last Pushed: 2024-10-24T02:22:20.000Z (2 months ago)
- Last Synced: 2024-10-24T18:58:25.930Z (2 months ago)
- Topics: explainable-ai, explainable-ml, julia, machine-learning, scientific-machine-learning, symbolic-regression
- Language: Jupyter Notebook
- Homepage:
- Size: 3.36 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# VGeneExpressionProgramming for symbolic regression
The repository contains the implementation of the Gene Expression Programming[1] in conjunction with the semantic backpropagation approach developed in[2]. Here, the target is to reach dimensional homogeneity for physical dimensions through the cause of the exploration.# How to use it?
- Install the package:
```julia
julia --project=.
using Pkg
Pkg.add(url="https://github.com/maxreiss123/GEP_SBP_.git")
```- Remark for your CSV file: Main_min_with_csv.jl in the test folder provides a step-by-step guide on how to initialize the GEP for your own problem
- Remark for your CSV file and utilizing dimensional homogeneity: Main_min_with_csv_and_units.jl in the test folder provides a step-by-step guide
- Remark: the tutorial folder contains notebook, that can be run with google-colab, while showing a step-by-step introduction# References
- [1] Ferreira, C. (2001). Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Complex Systems, 13.
- [2] Reissmann, M., Fang, Y., Ooi, A., & Sandberg, R. (2024). Constraining genetic symbolic regression via semantic backpropagation. arXiv. https://arxiv.org/abs/2409.07369# Acknowledgement
- The Coefficient optimization is inspired by [https://github.com/MilesCranmer/SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/ConstantOptimization.jl)
- We employ the insane fast [DynamicExpressions.jl](https://github.com/SymbolicML/DynamicExpressions.jl) for evaluating our expressions# Todo
- [ ] Documentation
- [ ] Naming conventions!
- [ ] Re-write postprocessing
- [ ] Improve usability for user interaction
- [ ] Next operations: Tail flip, Connection symbol flip, wrapper class for easy usage, config class for predefinition, staggered exploration