Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/maxto/ubique

A mathematical and quantitative library for Javascript and Node.js
https://github.com/maxto/ubique

Last synced: 18 days ago
JSON representation

A mathematical and quantitative library for Javascript and Node.js

Awesome Lists containing this project

README

        

![Ubique](http://maxto.github.io/ubique-logo.jpg)

# Ubique 0.5.1 (See [ChangeLog](CHANGELOG.md))

## CLOSED project

See [Builder](/builder/) folder:

- gulpile.js: create bundle, minification and docs
- compiler.js: load all functions attaching on main class ubique
- docgen.js: generate document object based on js filename and folder

==============================================================================================

[![Travis Build Status](https://travis-ci.org/maxto/ubique.svg?style=flat)](https://travis-ci.org/maxto/ubique)
[![NPM version](http://img.shields.io/npm/v/ubique.svg?style=flat)](https://www.npmjs.com/package/ubique)
[![Bower](https://img.shields.io/bower/v/bootstrap.svg?style=flat)](http://bower.io/search/?q=ubique)

A mathematical and quantitative library for Javascript and Node.js.

Ubique supports vectors and matrices, providing a lot of functionalities for elementary operations, linear algebra, statistics, time series analysis and computational finance.

Easy to use, Ubique runs both in Node.js/Io.js and in the Browser.

For further details see the [API Documentation](/doc/contents.md)

## Key Features

- Numerical computations in pure Javascript
- Vectors and Matrices manipulation
- Browser compatibility ECMAScript 5
- Server-side development with Node.js/Io.js
- Easily extensible with user-defines functions or libraries
- API documentation
- Free and Open Source (MIT License)

## Usage

```js
// Load Ubique
var ubique = require('ubique');

// EXAMPLE 1 - BASIC STATISTICS

// set variables
var x = [0.003,0.026,0.015,-0.009,0.014,0.024,0.015,0.066,-0.014,0.039];
var y = [-0.005,0.081,0.04,-0.037,-0.061,0.058,-0.049,-0.021,0.062,0.058];
var z = [0.04,-0.022,0.043,0.028,-0.078,-0.011,0.033,-0.049,0.09,0.087];

// Concatenate X,Y and Z along columns, returns a matrix W with size 10x3
var W = ubique.cat(1,x,y,z);

// [ [ 0.003, -0.005, 0.04 ],
// [ 0.026, 0.081, -0.022 ],
// [ 0.015, 0.04, 0.043 ],
// [ -0.009, -0.037, 0.028 ],
// [ 0.014, -0.061, -0.078 ],
// [ 0.024, 0.058, -0.011 ],
// [ 0.015, -0.049, 0.033 ],
// [ 0.066, -0.021, -0.049 ],
// [ -0.014, 0.062, 0.09 ],
// [ 0.039, 0.058, 0.087 ] ]

// Get statistics for matrix W along column (default)

var myStats = {

ArrayDimension: ubique.size(W), // size of the matrix
NumRows: ubique.nrows(W), // number of rows
NumColumns: ubique.ncols(W), // number of columns
Mean: ubique.mean(W), // average value for columns
StandardDev: ubique.std(W), // standard deviation (sample)
Variance: ubique.varc(W), // variance
Mode: ubique.mode(W), // mode
Median: ubique.median(W), // median
Max: ubique.max(W), // max
Min: ubique.min(W), // min
Kurtosis: ubique.kurtosis(W), // kurtosis
Skewness: ubique.skewness(W), // skewness
Interquartile: ubique.iqr(W), //interquartile range
MeanAbsDev: ubique.mad(W), // mean absolute deviation
Range: ubique.range(W), // range
Moment: ubique.moment(W,2), // second moment
Percentile: ubique.prctile(W,5), // 5-th percentile
Quantile: ubique.quantile(W,0.05), // quantile at 5%
Quartile: ubique.quartile(W), // quartile
ExcessKurtosis: ubique.xkurtosis(W), //excess kurtosis
Zscore: ubique.zscore(W) // Z-score

}

// { ArrayDimension: [ 10, 3 ],
// NumRows: 10,
// NumColumns: 3,
// Mean: [ [ 0.0179, 0.0126, 0.0161 ] ],
// StandardDev: [ [ 0.02323, 0.052812, 0.055266 ] ],
// Variance: [ [ 0.00054, 0.002789, 0.003054 ] ],
// Mode: [ [ 0.015, 0.058, -0.078 ] ],
// Median: [ [ -0.0115, -0.055, -0.0635 ] ],
// Max: [ [ 0.066, 0.081, 0.09 ] ],
// Min: [ [ -0.014, -0.061, -0.078 ] ],
// Kurtosis: [ [ 3.037581, 1.397642, 2.052037 ] ],
// Skewness: [ [ 0.617481, -0.118909, -0.266942 ] ],
// Interquartile: [ [ 0.023, 0.095, 0.065 ] ],
// MeanAbsDev: [ [ 0.01668, 0.0472, 0.04488 ] ],
// Range: [ [ 0.08, 0.142, 0.168 ] ],
// Moment: [ [ 0.000486, 0.00251, 0.002749 ] ],
// Percentile: [ [ -0.014, -0.061, -0.078 ] ],
// Quantile: [ [ -0.014, -0.061, -0.078 ] ],
// Quartile:
// [ [ 0.003, -0.037, -0.022 ],
// [ 0.015, 0.0175, 0.0305 ],
// [ 0.026, 0.058, 0.043 ] ],
// ExcessKurtosis: [ [ 0.037581, -1.602358, -0.947963 ] ],
// Zscore:
// [ [ -0.641399, -0.333255, 0.432455 ],
// [ 0.34868, 1.295149, -0.689394 ],
// [ -0.124836, 0.518817, 0.486738 ],
// [ -1.157961, -0.939172, 0.215323 ],
// [ -0.167883, -1.393611, -1.702677 ],
// [ 0.262586, 0.859646, -0.490356 ],
// [ -0.124836, -1.166391, 0.305794 ],
// [ 2.070555, -0.636214, -1.177941 ],
// [ -1.373195, 0.935385, 1.337171 ],
// [ 0.908289, 0.859646, 1.282888 ] ] }

// EXMPLE 2 - QUANTITATIVE METRICS FOR FINANCE

var mean = ubique.mean,
std = ubique.std,
cat = ubique.cat;

var myFinMetrics = {

ActiveReturn: ubique.activereturn(W,z), // active or excess return ober Z
AnnualizedReturn: ubique.annreturn(W,12), // annualized return (monthly)
Cagr: ubique.cagr(W,10/12), // compound annual growth rate
Percpos: ubique.percpos(W), // percentage of positive values
Ror: ubique.ror(W),// simple rate of return
AdjSharpeRatio: ubique.adjsharpe(W), // adjusted sharpe ratio
AnnuaAdjSharpeRatio: ubique.annadjsharpe(W,0,12), // annualized sharpe ratio
AnnualizedRisk: ubique.annrisk(W), // annualized risk
AverageDrawdown: ubique.avgdrawdown(W), // average drawdown
ContinuousDrawdow: ubique.cdrawdown(W), // continuous drawdown
Drawdown: ubique.drawdown(x), // drawdown, maxdrawdown, recovery period
BurkeRatio: ubique.burkeratio(W), // burke ratio
CalmarRatio: ubique.calmarratio(W), // calmar ratio
InformationRatio: ubique.inforatio(cat(1,x,y),z), // information ratio
JensenAlpha: ubique.jensenalpha(cat(1,x,y),z), // jensen-Alpha
M2Sortino: ubique.m2sortino(cat(1,x,y),z), // m2-Sortino
MartinRatio: ubique.martinratio(W), // martin ratio
Modigliani: ubique.modigliani(cat(1,x,y),z), // modigliani
OmegaRatio: ubique.omegaratio(W), // omega ratio
PainIndex: ubique.painindex(W), // pain index
PainRatio: ubique.painratio(W), // pain ratio
SharpeRatio: ubique.sharpe(W), // sharpe ratio
Sortino: ubique.sortino(W), // sortino
SterlingRatio: ubique.sterlingratio(W), // sterling ratio
TrackingError: ubique.trackerr(x,z), // tracking error
TreynorRatio: ubique.treynor(x,z), // treynor ratio
UlcerIndex: ubique.ulcerindex(W), // ulcer index
UpsidePotential: ubique.upsidepot(W), // upside potential
HistoricalVaR: ubique.histvar(W), // historical VaR
ParametricVaR: ubique.paramvar(mean(W),std(W)), // parametric VaR
MontecarloVaR: ubique.montecarlovar(x), // montecarlo VaR
HistConditionalVaR: ubique.histcondvar(W,0.95), // historical conditional VaR
ParamConditionalVaR: ubique.paramcondvar(mean(W),std(W)), // param conditional VaR

}

// { ActiveReturn: [ [ 42.60025, -22.656613, 0 ] ],
// AnnualizedReturn: [ [ 0.233815, 0.14509, 0.191836 ] ],
// Cagr: [ [ 0.229388, 0.151999, 0.137042 ] ],
// Percpos: [ [ 0.8, 0.5, 0.6 ] ],
// Ror: [ [ 0.187793, 0.125149, 0.112962 ] ],
// AdjSharpeRatio: [ [ 0.830583, 0.245232, 0.293754 ] ],
// AnnualizedAdjSharpeRatio: [ [ 3.766555, 0.827757, 0.99698 ] ],
// AnnualizedRisk: [ [ 0.368773, 0.838372, 0.877319 ] ],
// AverageDrawdown: [ [ 0.0115, 0.056571, 0.053047 ] ],
// ContinuousDrawdow: [ [ 0.009, 0.005, 0.022 ], [ 0.014, 0.095743, 0.088142 ] ],
// Drawdown:
// { dd: [ 0, 0, 0, 0.009, 0, 0, 0, 0, 0.01399, 0 ],
// ddrecov: [ 0, 0, 0, 4, 0, 0, 0, 0, 9, 0 ],
// maxdd: 0.01399,
// maxddrecov: [ 8, 9 ] },
// BurkeRatio: [ [ 4894.517302, 137.201479, 376.491017 ] ],
// CalmarRatio: [ [ 5818.643065, 148.279682, 372.92169 ] ],
// InformationRatio: [ [ 0.026302, -0.059705 ] ],
// JensenAlpha: [ [ 0.020772, 0.006256 ] ],
// M2Sortino: [ [ 82.804628, 16.217907 ] ],
// MartinRatio: [ [ 15477.822721, 272.324501, 720.112099 ] ],
// Modigliani: [ [ 0.042585, 0.013185 ] ],
// OmegaRatio: [ [ 8.782609, 1.728324, 2.00625 ] ],
// PainIndex: [ [ 0.0023, 0.042955, 0.037398 ] ],
// PainRatio: [ [ 35417.827351, 377.234425, 1039.102998 ] ],
// SharpeRatio: [ [ 0.770539, 0.23858, 0.291319 ] ],
// Sortino: [ [ 3.401051, 0.446679, 0.534003 ] ],
// SterlingRatio: [ [ 5818.643065, 169.246211, 440.888034 ] ],
// TrackingError: 0.068436,
// TreynorRatio: -0.100359,
// UlcerIndex: [ [ 0.005263, 0.059503, 0.053965 ] ],
// UpsidePotential: [ [ 0.0202, 0.0299, 0.0321 ] ],
// HistoricalVaR: [ [ 0.014, 0.061, 0.078 ] ],
// ParametricVaR: [ [ 0.020311, 0.074269, 0.074804 ] ],
// MontecarloVaR: 0.075047,
// HistoricalConditionalVaR: [ [ 0.014, 0.061, 0.078 ] ],
// ParametricConditionalVaR: [ 0.030018, 0.096337, 0.097898 ] }

// EXAMPLE 3 - ARRAY, VECTOR AND MATRIX

var A = [[5,6,5],[7,8,-1]],
B = [[-1,3,-1],[4,5,9]],
C = [5,6,3],
D = [[1,1,-1],[1,-2,3],[2,3,1]],
E = [[3, 2], [5, 2]];

var myData = {

sizeA: ubique.size(A), // 2x3 matrix
sizeB: ubique.size(B), // 2x3 matrix
sizeC: ubique.size(C), // 3x1 vector (= array)
sizeD: ubique.size(D), // 3x3 matrix
sizeE: ubique.size(E), // 2x2 matrix

'A+B': ubique.plus(A,B), // A + B -> 2x3 matrix
'A-B': ubique.minus(A,B), // A - B -> 2x3 matrix
'A.*B': ubique.times(A,B), // A * B element-wise -> 2x3 matrix
'A*C': ubique.mtimes(A,C), // A * C -> 2x1 vector
'A./B': ubique.rdivide(A,B), // A / B element-wise -> 2x3 matrix
'A/D': ubique.mrdivide(A,D), // A / D -> 2x3 matrix
'A.\\B': ubique.ldivide(A,B), // A \ B element-wise -> 2x3 matrix
'E\\B': ubique.mldivide(E,B), // A \ E -> 2x2 matrix
'det(D)': ubique.det(D), // determinant -> 1x1 array
'inv(D)': ubique.inv(D), // inverse -> 3x3 matrix
'Dx=C': ubique.linsolve(D,C), // linear solver -> 3x1 vector

reshapeD: ubique.reshape(D,1,9), // reshape matrix -> 1x9 vector
repmatC: ubique.repmat(C,1,4), // replicate matrix -> 3x4 matrix
matrixX: ubique.matrix(2,4,NaN), // new matrix -> 2x4 matrix
zerosX: ubique.zeros(2,4), // zeros matrix-> 2x4 matrix
eyeX: ubique.eye(2), // identity matrix -> 2x2 matrix

}

// { sizeA: [ 2, 3 ],
// sizeB: [ 2, 3 ],
// sizeC: [ 3, 1 ],
// sizeD: [ 3, 3 ],
// sizeE: [ 2, 2 ],
// 'A+B': [ [ 4, 9, 4 ], [ 11, 13, 8 ] ],
// 'A-B': [ [ 6, 3, 6 ], [ 3, 3, -10 ] ],
// 'A.*B': [ [ -5, 18, -5 ], [ 28, 40, -9 ] ],
// 'A*C': [ [ 76 ], [ 80 ] ],
// 'A./B': [ [ -5, 2, -5 ], [ 1.75, 1.6, -0.111111 ] ],
// 'A/D':
// [ [ -0.769231, 0.538462, 2.615385 ],
// [ 3.384615, 0.230769, 1.692308 ] ],
// 'A.\B': [ [ -0.2, 0.5, -0.2 ], [ 0.571429, 0.625, -9 ] ],
// 'E\B': [ [ 2.5, 1, 5 ], [ -4.25, 0, -8 ] ],
// 'det(D)': -13,
// 'inv(D)':
// [ [ 0.846154, 0.307692, -0.076923 ],
// [ -0.384615, -0.230769, 0.307692 ],
// [ -0.538462, 0.076923, 0.230769 ] ],
// 'Dx=C': [ 5.846154, -2.384615, -1.538462 ],
// reshapeD: [ [ 1, 1, 2, 1, -2, 3, -1, 3, 1 ] ],
// repmatC: [ [ 5, 5, 5, 5 ], [ 6, 6, 6, 6 ], [ 3, 3, 3, 3 ] ],
// matrixX: [ [ NaN, NaN, NaN, NaN ], [ NaN, NaN, NaN, NaN ] ],
// zerosX: [ [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ],
// eyeX: [ [ 1, 0 ], [ 0, 1 ] ] }

// EXAMPLE 4 - RETRIEVE FINANCIAL TIMESERIES FROM FREE RESOURCES

// Yahoo Historical Data (Async mode)
var options = {
'symbol': 'AAPL',
'from': '2015-01-01',
'to': '2015-05-01',
'period': 'd',
'fmt': 'YYYY-MM-DD'};

ubique.yahoo.historical(options,function(err,data){
// console.log(data)
});

```

## For MATLAB Users

Ubique mimics some basic MATLAB functionalities and applications in the matrix environment.

For some comparative code see [For Matlab Users](/doc/formatlabusers.md)

## Install

- Cloning repo from [Github](https://github.com/)

```
git clone git://github.com/maxto/ubique.git

cd ubique
```

Download the project dependencies:

```
npm install
```

To update main class constructor ubique.js, bundled and minified versions in `./dist` folder:

```
npm run build
```

- Using [Npm](https://www.npmjs.com/package/ubique)

```
npm install ubique
```

- Using [Bower](http://bower.io/search/?q=ubique)

```
bower install ubique
```

## Browser Bundle

Ubique can be used in the browser with bundled and minified version in `./dist` folder.

Example:

```html

```

## Test

To perform a test execute:

```
npm test
```

## ChangeLog

View [ChangeLog](CHANGELOG.md)

## License

The MIT License

Copyright© 2014-2015 Max Todaro

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.