Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mazzzystar/wavegan-pytorch
PyTorch implementation of " Synthesizing Audio with Generative Adversarial Networks"
https://github.com/mazzzystar/wavegan-pytorch
ai-music gan generative-model music-generation wavegan wavegan-pytorch
Last synced: 2 months ago
JSON representation
PyTorch implementation of " Synthesizing Audio with Generative Adversarial Networks"
- Host: GitHub
- URL: https://github.com/mazzzystar/wavegan-pytorch
- Owner: mazzzystar
- Created: 2018-07-16T12:03:08.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2020-06-08T12:37:57.000Z (over 4 years ago)
- Last Synced: 2024-08-05T06:05:32.811Z (6 months ago)
- Topics: ai-music, gan, generative-model, music-generation, wavegan, wavegan-pytorch
- Language: Python
- Homepage: https://arxiv.org/abs/1802.04208
- Size: 439 KB
- Stars: 64
- Watchers: 6
- Forks: 15
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# WaveGAN-pytorch
PyTorch implementation of [Synthesizing Audio with Generative Adversarial Networks(Chris Donahue, Feb 2018)](https://arxiv.org/abs/1802.04208).Befor running, make sure you have the `sc09` dataset, and put that dataset under your current filepath.
## Quick Start:
1. Installation
```
sudo apt-get install libav-tools
```2. Download dataset
* `sc09`: [sc09 raw WAV files](http://deepyeti.ucsd.edu/cdonahue/sc09.tar.gz), utterances of spoken english words '0'-'9'
* `piano`: [Piano raw WAV files](http://deepyeti.ucsd.edu/cdonahue/mancini_piano.tar.gz)3. Run
For `sc09` task, **make sure `sc09` dataset under your current project filepath befor run your code.**
```
$ python train.py
```#### Training time
* For `SC09` dataset, 4 X Tesla P40 takes nearly 2 days to get reasonable result.
* For `piano` piano dataset, 2 X Tesla P40 takes 3-6 hours to get reasonable result.
* Increase the `BATCH_SIZE` from 10 to 32 or 64 can acquire shorter per-epoch time on multiple-GPU but slower gradient descent learning rate.## Results
Generated "0-9": https://soundcloud.com/mazzzystar/sets/dcgan-sc09Generated piano: https://soundcloud.com/mazzzystar/sets/wavegan-piano
Loss curve:
![](imgs/loss_curve.png)
## Architecture
![](imgs/archi.png)## TODO
* [ ] Add some evaluation experiments, eg. inception score.## Contributions
This repo is based on [chrisdonahue's](https://github.com/chrisdonahue/wavegan) and [jtcramer's](https://github.com/jtcramer/wavegan) implementation.