Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mbarbetti/tf-gen-models

:package: Ready to use implementations of state-of-the-art generative models in TensorFlow 2
https://github.com/mbarbetti/tf-gen-models

deep-learning gan generative-models python tensorflow

Last synced: 4 months ago
JSON representation

:package: Ready to use implementations of state-of-the-art generative models in TensorFlow 2

Awesome Lists containing this project

README

        


tf-gen-models logo


Ready to use implementations of state-of-the-art generative models in TensorFlow 2


PyPI - Python versions
PyPI - Version
PyPI - Status
PyPI - Downloads

GitHub - Forks
GitHub - Stars
DOI

## Installation

### Dependencies

tf-gen-models requires:

* Python (>= 3.7, < 3.10)
* TensorFlow (>= 2.5)
* Matplotlib (>= 3.4)
* Pillow (>= 8.0)

- - -

The `tf-gen-models` package is built upon TensorFlow 2. See the [TensorFlow install guide](https://www.tensorflow.org/install) for the [pip package](https://www.tensorflow.org/install/pip) while, to enable GPU support, the use [Docker container](https://www.tensorflow.org/install/docker) is recommended. Alternatively, GPU-enabled TensorFlow can be easily installed using the `tensorflow-gpu` package on [conda-forge](https://conda-forge.org/blog/posts/2021-11-03-tensorflow-gpu/).

### User installation

If you already have a working installation of TensorFlow 2 (preferably with the GPU support enabled), the easiest way to install tf-gen-models is using `pip`:

```shell
pip install tf-gen-models
```

## Available generative models

| Generative models | Implementation | Notebooks | Trends |
| :-----------------: |:--------------:|:---------:|:------:|
| GAN | ✔️ | 🛠️ | |
| VAE | ❌ | ❌ | |
| Norm Flow | ❌ | ❌ | |
| Diffusion | ❌ | ❌ | |

### Generative Adversarial Networks

| Algorithms | Implementation | Conditioning*| Notebooks | Paper |
|:----------:|:--------------:|:------------:|:---------:|:---------------------------------------------------------------:|
| `GAN` | ✔️ | 🛠️ | ✔️ | arXiv:1406.2661 |
| `BceGAN` | ✔️ | ❌ | ✔️ | |
| `WGAN` | ✔️ | ❌ | ✔️ | arXiv:1701.07875 |
| `WGAN_GP` | ✔️ | ❌ | ✔️ | arXiv:1704.00028 |
| `CramerGAN`| ✔️ | ❌ | ✔️ | arXiv:1705.10743 |
| `WGAN_ALP` | ✔️ | ❌ | 🛠️ | arXiv:1907.05681 |

*Referring to the **conditional version** of GANs proposed in [arXiv:1411.1784](https://arxiv.org/abs/1411.1784).

### Variational Autoencoders

_Planned for release v0.1.0_

### Normalizing Flows

_Planned for release v0.2.0_

### Diffusion Models

_Planned for release v0.2.0_

## Jupyter notebooks

* MNIST generation with GANs [[GAN](https://github.com/mbarbetti/tf-gen-models/blob/main/notebooks/gan/0_MNIST_gen_DC-GAN.ipynb)] [[BceGAN](https://github.com/mbarbetti/tf-gen-models/blob/main/notebooks/gan/0_MNIST_gen_DC-BceGAN.ipynb)] [[WGAN](https://github.com/mbarbetti/tf-gen-models/blob/main/notebooks/gan/0_MNIST_gen_DC-WGAN.ipynb)] [[WGAN-GP](https://github.com/mbarbetti/tf-gen-models/blob/main/notebooks/gan/0_MNIST_gen_DC-WGAN-GP.ipynb)] [[CramerGAN](https://github.com/mbarbetti/tf-gen-models/blob/main/notebooks/gan/0_MNIST_gen_DC-CramerGAN.ipynb)]

## License

[MIT License](LICENSE)