Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mbari-org/pacific-sound-notebooks
Juptyer notebook tutorials on using the data in the AWS pacific-sound registry for ocean soundscape research, education, and the arts
https://github.com/mbari-org/pacific-sound-notebooks
acoustics aws bluewhale deep-learning humpback humpback-whale machine-learning marine-data open-access open-data open-datasets open-science python
Last synced: about 2 months ago
JSON representation
Juptyer notebook tutorials on using the data in the AWS pacific-sound registry for ocean soundscape research, education, and the arts
- Host: GitHub
- URL: https://github.com/mbari-org/pacific-sound-notebooks
- Owner: mbari-org
- License: gpl-3.0
- Created: 2021-10-10T18:23:17.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-01-08T19:28:11.000Z (about 1 year ago)
- Last Synced: 2024-12-07T17:05:00.652Z (about 2 months ago)
- Topics: acoustics, aws, bluewhale, deep-learning, humpback, humpback-whale, machine-learning, marine-data, open-access, open-data, open-datasets, open-science, python
- Homepage: https://docs.mbari.org/pacific-sound
- Size: 37.4 MB
- Stars: 22
- Watchers: 8
- Forks: 6
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[![MBARI](https://www.mbari.org/wp-content/uploads/2014/11/logo-mbari-3b.png)](http://www.mbari.org)
##AboutTutorials written in [Jupyter Notebooks](https://jupyter.org) to guide you through both accessing and
using the data in the AWS [pacific-sound registry](https://registry.opendata.aws/pacific-sound).
Tutorials
## Data Notebooks
* [2kHz Data](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/data/PacificSound2kHz.ipynb) ✨ Recommended first step to learn more about the low-frequency data
* [16kHz Data](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/data/PacificSound16kHz.ipynb) ✨ Recommended first step to learn more about the low-mid-frequency data
* [256kHz Data](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/data/PacificSound256kHz.ipynb) ✨ Recommended first step to learn more about the raw 10-minute data
* [256kHz to 2kHz Decimation](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/data/PacificSound256kHzTo2kHzDecimate.ipynb) ✨ Recommended to learn about how the raw 10-minute data is decimated from 256kHz to 2Khz## Research and Machine Learning Notebooks
* Blue Whales
* [Blue B call index 🐳](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/bluewhales/classify/blueB/PacificSoundBlueBCallIndex.ipynb) Study song occurrence using a signal processing method
* [Blue A call classification 🐳](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/bluewhales/classify/blueA/PacificSoundClassifyBlueA.ipynb) Classify blue whale song A calls with a neural network model
* Fin Whales
* [Fin whale call index 🐳](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/finwhales/PacificSound_FinCallindex.ipynb) Fin whale song occurrence using a signal processing method
* Humpback Whales
* [Humpback whale song detection 🐳](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/humpbackwhales/detect/PacificSoundDetectHumpbackSong.ipynb) Detect humpback song with a neural network model
* Shipping Noise
- [Quantify shipping noise in the soundscape](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/shippingnoise/PacificSoundShippingNoiseAnalysis.ipynb) 🛳️ Apply international standards to measure shipping noise and its temporal variations.
## Listen Up
* [Full access to 16 kHz audio](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/listen/PacificSoundListen.ipynb) 🐬 Listen to example recordings of dolphins and whales, then pick any time to listen and explore.##
DocumentationSee [pacific-sound](http://docs.mbari.org/pacific-sound) for the official documentation.
##
Quick Start
### [Install in SageMaker](https://docs.mbari.org/pacific-sound/installation/sagemaker/)### [Install in Colab](https://docs.mbari.org/pacific-sound/installation/colab/)
### Install in your computer[**Python>=3.6.0**](https://www.python.org/) is required with the
[requirements.txt](https://github.com/mbari-org/pacific-sound-notebooks/blob/master/docs/notebooks/requirements.txt).
The recommended way to run the notebooks is using the [Anaconda](https://www.anaconda.com/) environment```bash
git clone https://github.com/mbari-org/pacific-sound-notebooks
cd pacific-sound-notebooks
```If using a Mac
```
brew install sox
```If using Linux
```
apt-get install libsox-fmt-all libsox-dev
``````
conda env create
conda activate pacific-sound-notebooks
pip install ipykernel
python -m ipykernel install --user --name=pacific-sound-notebooks
jupyter notebook
```