An open API service indexing awesome lists of open source software.

https://github.com/md-emon-hasan/langchain


https://github.com/md-emon-hasan/langchain

Last synced: 7 months ago
JSON representation

Awesome Lists containing this project

README

          

# LangChain
![Image](https://github.com/user-attachments/assets/eabf0a00-b5ee-4e89-bc0c-0609b1542c66)

## Overview
LangChain is a cutting-edge open-source framework designed to streamline the development of applications leveraging Large Language Models (LLMs). It provides robust tools for seamless integration with external data sources, memory management, and agent-based decision-making, empowering developers to build sophisticated AI-powered applications efficiently.

## Key Features
- **Seamless LLM Integration**: Effortlessly connect with models such as OpenAI, Hugging Face, Cohere, and others.
- **Advanced Prompt Engineering**: Optimize and refine prompts for improved model interactions.
- **Persistent Memory Management**: Store and retrieve conversation history to enhance contextual awareness.
- **Intelligent Agents and Tools**: Automate decision-making workflows with flexible agents.
- **Efficient Vector Databases**: Implement state-of-the-art knowledge indexing and retrieval.

## Installation
To get started with LangChain, install the necessary dependencies:
```bash
pip install langchain
pip install openai # If using OpenAI models
pip install chromadb # For vector storage
pip install faiss-cpu # Alternative vector store
```

## Quick Start Guide
### 1. Basic LLM Usage
```python
from langchain.llms import OpenAI

llm = OpenAI(model_name="text-davinci-003", openai_api_key="your-api-key")
response = llm.predict("What is LangChain?")
print(response)
```

### 2. Creating a Conversational AI with Memory
```python
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain.llms import OpenAI

memory = ConversationBufferMemory()
llm = OpenAI(model_name="gpt-3.5-turbo", openai_api_key="your-api-key")
conversation = ConversationChain(llm=llm, memory=memory)

print(conversation.predict(input="Hello!"))
print(conversation.predict(input="How are you today?"))
```

### 3. Utilizing Vector Databases (ChromaDB)
```python
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(openai_api_key="your-api-key")
vectorstore = Chroma(embedding_function=embeddings)
vectorstore.add_texts(["LangChain is a powerful framework for LLM applications."])

query = "What is LangChain?"
results = vectorstore.similarity_search(query)
print(results)
```

### 4. Implementing an AI Agent with Custom Tools
```python
from langchain.agents import AgentType, initialize_agent
from langchain.llms import OpenAI
from langchain.tools import Tool

def custom_tool(query):
return f"Processed query: {query}"

tools = [Tool(name="CustomTool", func=custom_tool, description="A sample tool")]
llm = OpenAI(model_name="gpt-3.5-turbo", openai_api_key="your-api-key")
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

response = agent.run("Use CustomTool to process 'Hello World'")
print(response)
```

## Advanced Topics
- **Fine-tuning LangChain with Hugging Face Models**
- **Building a Retrieval-Augmented Generation (RAG) Pipeline**
- **Deploying LangChain Applications with Streamlit and FastAPI**

## Best Practices
- Implement caching mechanisms to optimize API costs.
- Use prompt engineering techniques like few-shot learning to improve performance.
- Secure API keys by leveraging environment variables.

## Resources
- [LangChain Official Documentation](https://python.langchain.com/)
- [LangChain GitHub Repository](https://github.com/hwchase17/langchain)
- [Community Support and Discussions](https://discord.com/invite/langchain)

## Contributing
Contributions are highly encouraged! Feel free to submit issues, feature requests, or pull requests to help enhance this repository.

## Contact Information
For any inquiries or collaboration opportunities, feel free to reach out:
- **Email:** [iconicemon01@gmail.com](mailto:iconicemon01@gmail.com)
- **WhatsApp:** [+8801834363533](https://wa.me/8801834363533)
- **GitHub:** [Md-Emon-Hasan](https://github.com/Md-Emon-Hasan)
- **LinkedIn:** [Md Emon Hasan](https://www.linkedin.com/in/md-emon-hasan)
- **Facebook:** [Md Emon Hasan](https://www.facebook.com/mdemon.hasan2001/)

## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.