https://github.com/md-emon-hasan/langchain
https://github.com/md-emon-hasan/langchain
Last synced: 7 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/md-emon-hasan/langchain
- Owner: Md-Emon-Hasan
- License: mit
- Created: 2025-02-13T16:38:00.000Z (8 months ago)
- Default Branch: master
- Last Pushed: 2025-02-13T16:58:17.000Z (8 months ago)
- Last Synced: 2025-02-13T17:50:24.122Z (8 months ago)
- Language: Jupyter Notebook
- Size: 737 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# LangChain
## Overview
LangChain is a cutting-edge open-source framework designed to streamline the development of applications leveraging Large Language Models (LLMs). It provides robust tools for seamless integration with external data sources, memory management, and agent-based decision-making, empowering developers to build sophisticated AI-powered applications efficiently.## Key Features
- **Seamless LLM Integration**: Effortlessly connect with models such as OpenAI, Hugging Face, Cohere, and others.
- **Advanced Prompt Engineering**: Optimize and refine prompts for improved model interactions.
- **Persistent Memory Management**: Store and retrieve conversation history to enhance contextual awareness.
- **Intelligent Agents and Tools**: Automate decision-making workflows with flexible agents.
- **Efficient Vector Databases**: Implement state-of-the-art knowledge indexing and retrieval.## Installation
To get started with LangChain, install the necessary dependencies:
```bash
pip install langchain
pip install openai # If using OpenAI models
pip install chromadb # For vector storage
pip install faiss-cpu # Alternative vector store
```## Quick Start Guide
### 1. Basic LLM Usage
```python
from langchain.llms import OpenAIllm = OpenAI(model_name="text-davinci-003", openai_api_key="your-api-key")
response = llm.predict("What is LangChain?")
print(response)
```### 2. Creating a Conversational AI with Memory
```python
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain.llms import OpenAImemory = ConversationBufferMemory()
llm = OpenAI(model_name="gpt-3.5-turbo", openai_api_key="your-api-key")
conversation = ConversationChain(llm=llm, memory=memory)print(conversation.predict(input="Hello!"))
print(conversation.predict(input="How are you today?"))
```### 3. Utilizing Vector Databases (ChromaDB)
```python
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings(openai_api_key="your-api-key")
vectorstore = Chroma(embedding_function=embeddings)
vectorstore.add_texts(["LangChain is a powerful framework for LLM applications."])query = "What is LangChain?"
results = vectorstore.similarity_search(query)
print(results)
```### 4. Implementing an AI Agent with Custom Tools
```python
from langchain.agents import AgentType, initialize_agent
from langchain.llms import OpenAI
from langchain.tools import Tooldef custom_tool(query):
return f"Processed query: {query}"tools = [Tool(name="CustomTool", func=custom_tool, description="A sample tool")]
llm = OpenAI(model_name="gpt-3.5-turbo", openai_api_key="your-api-key")
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)response = agent.run("Use CustomTool to process 'Hello World'")
print(response)
```## Advanced Topics
- **Fine-tuning LangChain with Hugging Face Models**
- **Building a Retrieval-Augmented Generation (RAG) Pipeline**
- **Deploying LangChain Applications with Streamlit and FastAPI**## Best Practices
- Implement caching mechanisms to optimize API costs.
- Use prompt engineering techniques like few-shot learning to improve performance.
- Secure API keys by leveraging environment variables.## Resources
- [LangChain Official Documentation](https://python.langchain.com/)
- [LangChain GitHub Repository](https://github.com/hwchase17/langchain)
- [Community Support and Discussions](https://discord.com/invite/langchain)## Contributing
Contributions are highly encouraged! Feel free to submit issues, feature requests, or pull requests to help enhance this repository.## Contact Information
For any inquiries or collaboration opportunities, feel free to reach out:
- **Email:** [iconicemon01@gmail.com](mailto:iconicemon01@gmail.com)
- **WhatsApp:** [+8801834363533](https://wa.me/8801834363533)
- **GitHub:** [Md-Emon-Hasan](https://github.com/Md-Emon-Hasan)
- **LinkedIn:** [Md Emon Hasan](https://www.linkedin.com/in/md-emon-hasan)
- **Facebook:** [Md Emon Hasan](https://www.facebook.com/mdemon.hasan2001/)## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.