Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/meetps/tf-3dgan
Tensorflow implementation of 3D Generative Adversarial Network.
https://github.com/meetps/tf-3dgan
deep-learning generative-adversarial-network tensorflow
Last synced: 5 days ago
JSON representation
Tensorflow implementation of 3D Generative Adversarial Network.
- Host: GitHub
- URL: https://github.com/meetps/tf-3dgan
- Owner: meetps
- License: mit
- Created: 2017-02-21T04:31:53.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2019-01-03T20:21:23.000Z (about 6 years ago)
- Last Synced: 2024-12-25T19:05:47.000Z (19 days ago)
- Topics: deep-learning, generative-adversarial-network, tensorflow
- Language: Python
- Homepage: https://meetshah.dev/gan/deep-learning/tensorflow/visdom/2017/04/01/3d-generative-adverserial-networks-for-volume-classification-and-generation.html
- Size: 80.1 KB
- Stars: 284
- Watchers: 17
- Forks: 79
- Open Issues: 18
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# tf-3dgan
[![license](https://img.shields.io/github/license/mashape/apistatus.svg)](https://github.com/meetshah1995/tf-3dgan/blob/master/LICENSE)
[![arXiv Tag](https://img.shields.io/badge/arXiv-1610.07584-brightgreen.svg)](https://arxiv.org/abs/1610.07584)## Tensorflow implementation of 3D Generative Adversarial Network.
This is a tensorflow implementation of the paper "Learning a Probabilistic Latent Space of Object Shapes
via 3D Generative-Adversarial Modeling"![](http://3dgan.csail.mit.edu/images/model.jpg)
[Blog Post with interactive volume plots](https://meetshah1995.github.io/gan/deep-learning/tensorflow/visdom/2017/04/01/3d-generative-adverserial-networks-for-volume-classification-and-generation.html)
### Requirements
* tensorflow>=1.0
* visdom>=1.0.1 (for mesh visualization)
* scipy
* scikit-image
* stl (optional)#### One-line installation
`pip install scipy scikit-image stl visdom`### Data
* Download the training data from the 3D Shapenet [website](http://3dshapenets.cs.princeton.edu/3DShapeNetsCode.zip)
* Extract the zip and modify the path appropriately in `dataIO.py`### Usage
Launch [visdom](https://github.com/facebookresearch/visdom#launch) by running
```
python -m visdom.server
```To train the model (visdom will show generated chairs after every 200 minibatches)
```
python 3dgan_mit_biasfree.py 0
```To generate chairs
```
python 3dgan_mit_biasfree.py 1
```Some sample generated chairs
| | | | | |
|------------|--------------|------------|----------|----------|
|![](http://homepages.iitb.ac.in/~meetshah1995/files/2_.png) | ![](http://homepages.iitb.ac.in/~meetshah1995/files/4_.png) | ![](http://homepages.iitb.ac.in/~meetshah1995/files/1_.png) | ![](http://homepages.iitb.ac.in/~meetshah1995/files/3_.png) | ![](http://homepages.iitb.ac.in/~meetshah1995/files/5_.png) |### Source code files
| File | Description |
|-----------|-------------------------------------------------------------------------------|
|3dgan_mit_biasfree.py | 3dgan as mentioned in the paper, with same hyperparams.
|3dgan.py | baseline 3dgan with fully connected layer at end of discriminator.
|3dgan_mit.py | 3dgan as mentioned in the paper with bias in convolutional layers.
|3dgan_autoencoder.py | 3dgan with support for autoencoder based pre-training.
|3dgan_feature_matching.py | 3dgan with additional loss of feature mathcing of last layers.
|dataIO.py | data input output and plotting utilities.
|utils.py | tensorflow utils like leaky_relu and batch_norm layer.### Todo
* Host the trained models
* Add argparser based interface
* Add threaded dataloader
* Release the pytorch and keras versions of the GAN.
* Train for longer number of epochs to improve quality of generated chairs.### Contributors
* @meetshah1995
* @khushhallchandra