Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/megvii-model/MOTR

[ECCV2022] MOTR: End-to-End Multiple-Object Tracking with TRansformer
https://github.com/megvii-model/MOTR

end-to-end multi-object-tracking pytorch transformer

Last synced: about 1 month ago
JSON representation

[ECCV2022] MOTR: End-to-End Multiple-Object Tracking with TRansformer

Awesome Lists containing this project

README

        

# MOTR: End-to-End Multiple-Object Tracking with TRansformer

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/motr-end-to-end-multiple-object-tracking-with/multi-object-tracking-on-mot17)](https://paperswithcode.com/sota/multi-object-tracking-on-mot17?p=motr-end-to-end-multiple-object-tracking-with)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/motr-end-to-end-multiple-object-tracking-with/multi-object-tracking-on-mot16)](https://paperswithcode.com/sota/multi-object-tracking-on-mot16?p=motr-end-to-end-multiple-object-tracking-with)

This repository is an official implementation of the paper [MOTR: End-to-End Multiple-Object Tracking with TRansformer](https://arxiv.org/pdf/2105.03247.pdf).

## Introduction

**TL; DR.** MOTR is a fully end-to-end multiple-object tracking framework based on Transformer. It directly outputs the tracks within the video sequences without any association procedures.



**Abstract.** The key challenge in multiple-object tracking task is temporal modeling of the object under track. Existing tracking-by-detection methods adopt simple heuristics, such as spatial or appearance similarity. Such methods, in spite of their commonality, are overly simple and lack the ability to learn temporal variations from data in an end-to-end manner.In this paper, we present MOTR, a fully end-to-end multiple-object tracking framework. It learns to model the long-range temporal variation of the objects. It performs temporal association implicitly and avoids previous explicit heuristics. Built upon DETR, MOTR introduces the concept of "track query". Each track query models the entire track of an object. It is transferred and updated frame-by-frame to perform iterative predictions in a seamless manner. Tracklet-aware label assignment is proposed for one-to-one assignment between track queries and object tracks. Temporal aggregation network together with collective average loss is further proposed to enhance the long-range temporal relation. Experimental results show that MOTR achieves competitive performance and can serve as a strong Transformer-based baseline for future research.

## Updates
- (2021/09/23) Report BDD100K results and release corresponding codes [motr_bdd100k](https://github.com/megvii-model/MOTR/tree/motr_bdd100k).
- (2022/02/09) Higher performance achieved by not clipping the bounding boxes inside the image.
- (2022/02/11) Add checkpoint support for training on RTX 2080ti.
- (2022/02/11) Report [DanceTrack](https://github.com/DanceTrack/DanceTrack) results and [scripts](configs/r50_motr_train_dance.sh).
- (2022/05/12) Higher performance achieved by removing the public detection filtering (filter_pub_det) trick.
- (2022/07/04) MOTR is accepted by ECCV 2022.

## Main Results

### MOT17

| **Method** | **Dataset** | **Train Data** | **HOTA** | **DetA** | **AssA** | **MOTA** | **IDF1** | **IDS** | **URL** |
| :--------: | :---------: | :------------------: | :------: | :------: | :------: | :------: | :------: | :-----: | :-----------------------------------------------------------------------------------------: |
| MOTR | MOT17 | MOT17+CrowdHuman Val | 57.8 | 60.3 | 55.7 | 73.4 | 68.6 | 2439 | [model](https://drive.google.com/file/d/1K9AbtzTCBNsOD8LYA1k16kf4X0uJi8PC/view?usp=sharing) |

### DanceTrack

| **Method** | **Dataset** | **Train Data** | **HOTA** | **DetA** | **AssA** | **MOTA** | **IDF1** | **URL** |
| :--------: | :---------: | :------------: | :------: | :------: | :------: | :------: | :------: | :-----------------------------------------------------------------------------------------: |
| MOTR | DanceTrack | DanceTrack | 54.2 | 73.5 | 40.2 | 79.7 | 51.5 | [model](https://drive.google.com/file/d/1zs5o1oK8diafVfewRl3heSVQ7-XAty3J/view?usp=sharing) |

### BDD100K

| **Method** | **Dataset** | **Train Data** | **MOTA** | **IDF1** | **IDS** | **URL** |
| :--------: | :---------: | :------------: | :------: | :------: | :-----: | :-----------------------------------------------------------------------------------------: |
| MOTR | BDD100K | BDD100K | 32.0 | 43.5 | 3493 | [model](https://drive.google.com/file/d/13fsTj9e6Hk7qVcybWi1X5KbZEsFCHa6e/view?usp=sharing) |

*Note:*

1. MOTR on MOT17 and DanceTrack is trained on 8 NVIDIA RTX 2080ti GPUs.
2. The training time for MOT17 is about 2.5 days on V100 or 4 days on RTX 2080ti;
3. The inference speed is about 7.5 FPS for resolution 1536x800;
4. All models of MOTR are trained with ResNet50 with pre-trained weights on COCO dataset.

## Installation

The codebase is built on top of [Deformable DETR](https://github.com/fundamentalvision/Deformable-DETR).

### Requirements

* Linux, CUDA>=9.2, GCC>=5.4

* Python>=3.7

We recommend you to use Anaconda to create a conda environment:
```bash
conda create -n deformable_detr python=3.7 pip
```
Then, activate the environment:
```bash
conda activate deformable_detr
```

* PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions [here](https://pytorch.org/))

For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:
```bash
conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
```

* Other requirements
```bash
pip install -r requirements.txt
```

* Build MultiScaleDeformableAttention
```bash
cd ./models/ops
sh ./make.sh
```

## Usage

### Dataset preparation

1. Please download [MOT17 dataset](https://motchallenge.net/) and [CrowdHuman dataset](https://www.crowdhuman.org/) and organize them like [FairMOT](https://github.com/ifzhang/FairMOT) as following:

```
.
├── crowdhuman
│   ├── images
│   └── labels_with_ids
├── MOT15
│   ├── images
│   ├── labels_with_ids
│   ├── test
│   └── train
├── MOT17
│   ├── images
│   ├── labels_with_ids
├── DanceTrack
│   ├── train
│   ├── test
├── bdd100k
│   ├── images
│ ├── track
│ ├── train
│ ├── val
│   ├── labels
│ ├── track
│ ├── train
│ ├── val

```

2. For BDD100K dataset, you can use the following script to generate txt file:

```bash
cd datasets/data_path
python3 generate_bdd100k_mot.py
cd ../../
```

### Training and Evaluation

#### Training on single node

You can download COCO pretrained weights from [Deformable DETR](https://github.com/fundamentalvision/Deformable-DETR). Then training MOTR on 8 GPUs as following:

```bash
sh configs/r50_motr_train.sh

```

#### Evaluation on MOT15

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT15 train dataset:

```bash
sh configs/r50_motr_eval.sh

```

For visual in demo video, you can enable 'vis=True' in eval.py like:
```bash
det.detect(vis=True)

```

#### Evaluation on MOT17

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT17 test dataset (submit to server):

```bash
sh configs/r50_motr_submit.sh

```
#### Evaluation on BDD100K

For BDD100K dataset, please refer [motr_bdd100k](https://github.com/megvii-model/MOTR/tree/motr_bdd100k).

#### Test on Video Demo

We also provide a demo interface which allows for a quick processing of a given video.

```bash
EXP_DIR=exps/e2e_motr_r50_joint
python3 demo.py \
--meta_arch motr \
--dataset_file e2e_joint \
--epoch 200 \
--with_box_refine \
--lr_drop 100 \
--lr 2e-4 \
--lr_backbone 2e-5 \
--pretrained ${EXP_DIR}/motr_final.pth \
--output_dir ${EXP_DIR} \
--batch_size 1 \
--sample_mode 'random_interval' \
--sample_interval 10 \
--sampler_steps 50 90 120 \
--sampler_lengths 2 3 4 5 \
--update_query_pos \
--merger_dropout 0 \
--dropout 0 \
--random_drop 0.1 \
--fp_ratio 0.3 \
--query_interaction_layer 'QIM' \
--extra_track_attn \
--resume ${EXP_DIR}/motr_final.pth \
--input_video figs/demo.avi
```

## Citing MOTR
If you find MOTR useful in your research, please consider citing:
```bibtex
@inproceedings{zeng2021motr,
title={MOTR: End-to-End Multiple-Object Tracking with TRansformer},
author={Zeng, Fangao and Dong, Bin and Zhang, Yuang and Wang, Tiancai and Zhang, Xiangyu and Wei, Yichen},
booktitle={European Conference on Computer Vision (ECCV)},
year={2022}
}
```