Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/megvii-research/NAFNet
The state-of-the-art image restoration model without nonlinear activation functions.
https://github.com/megvii-research/NAFNet
deblur denoise eccv2022 image-deblurring image-denoising image-restoration low-level-vision pytorch stereo-super-resolution
Last synced: 2 months ago
JSON representation
The state-of-the-art image restoration model without nonlinear activation functions.
- Host: GitHub
- URL: https://github.com/megvii-research/NAFNet
- Owner: megvii-research
- License: other
- Created: 2022-04-10T11:59:05.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2024-07-03T13:26:24.000Z (7 months ago)
- Last Synced: 2024-08-08T23:21:03.618Z (6 months ago)
- Topics: deblur, denoise, eccv2022, image-deblurring, image-denoising, image-restoration, low-level-vision, pytorch, stereo-super-resolution
- Language: Python
- Homepage:
- Size: 15.8 MB
- Stars: 2,118
- Watchers: 21
- Forks: 261
- Open Issues: 102
-
Metadata Files:
- Readme: readme.md
- License: LICENSE
Awesome Lists containing this project
README
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/simple-baselines-for-image-restoration/image-deblurring-on-gopro)](https://paperswithcode.com/sota/image-deblurring-on-gopro?p=simple-baselines-for-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/simple-baselines-for-image-restoration/image-denoising-on-sidd)](https://paperswithcode.com/sota/image-denoising-on-sidd?p=simple-baselines-for-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-flickr1024-1)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-flickr1024-1?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-flickr1024-2)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-flickr1024-2?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-kitti2012-2x-1)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-kitti2012-2x-1?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-kitti2012-4x)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-kitti2012-4x?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-kitti2015-2x)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-kitti2015-2x?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-kitti2015-4x)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-kitti2015-4x?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-middlebury-1)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-middlebury-1?p=nafssr-stereo-image-super-resolution-using)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/nafssr-stereo-image-super-resolution-using/stereo-image-super-resolution-on-middlebury)](https://paperswithcode.com/sota/stereo-image-super-resolution-on-middlebury?p=nafssr-stereo-image-super-resolution-using)## NAFNet: Nonlinear Activation Free Network for Image Restoration
The official pytorch implementation of the paper **[Simple Baselines for Image Restoration (ECCV2022)](https://arxiv.org/abs/2204.04676)**
#### Liangyu Chen\*, Xiaojie Chu\*, Xiangyu Zhang, Jian Sun
>Although there have been significant advances in the field of image restoration recently, the system complexity of the state-of-the-art (SOTA) methods is increasing as well, which may hinder the convenient analysis and comparison of methods.
>In this paper, we propose a simple baseline that exceeds the SOTA methods and is computationally efficient.
>To further simplify the baseline, we reveal that the nonlinear activation functions, e.g. Sigmoid, ReLU, GELU, Softmax, etc. are **not necessary**: they could be replaced by multiplication or removed. Thus, we derive a Nonlinear Activation Free Network, namely NAFNet, from the baseline. SOTA results are achieved on various challenging benchmarks, e.g. 33.69 dB PSNR on GoPro (for image deblurring), exceeding the previous SOTA 0.38 dB with only 8.4% of its computational costs; 40.30 dB PSNR on SIDD (for image denoising), exceeding the previous SOTA 0.28 dB with less than half of its computational costs.| | | |
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| Denoise | Deblur | StereoSR([NAFSSR](https://github.com/megvii-research/NAFNet/blob/main/docs/StereoSR.md)) |![PSNR_vs_MACs](./figures/PSNR_vs_MACs.jpg)
### News
**2022.08.02** The Baseline, including the pretrained models and train/test configs, are available now.**2022.07.03** Related work, [Improving Image Restoration by Revisiting Global Information Aggregation](https://arxiv.org/abs/2112.04491) (TLC, a.k.a TLSC in our paper) is accepted by **ECCV2022** :tada: . Code is available at https://github.com/megvii-research/TLC.
**2022.07.03** Our [paper](https://arxiv.org/abs/2204.04676) is accepted by **ECCV2022** :tada:
**2022.06.19** [NAFSSR](https://arxiv.org/abs/2204.08714) (as a challenge winner) is selected for an ORAL presentation at CVPR 2022, NTIRE workshop :tada: [Presentation video](https://drive.google.com/file/d/16w33zrb3UI0ZIhvvdTvGB2MP01j0zJve/view), [slides](https://data.vision.ee.ethz.ch/cvl/ntire22/slides/Chu_NAFSSR_slides.pdf) and [poster](https://data.vision.ee.ethz.ch/cvl/ntire22/posters/Chu_NAFSSR_poster.pdf) are available now.
**2022.04.15** NAFNet based Stereo Image Super-Resolution solution ([NAFSSR](https://arxiv.org/abs/2204.08714)) won the **1st place** on the NTIRE 2022 Stereo Image Super-resolution Challenge! Training/Evaluation instructions see [here](https://github.com/megvii-research/NAFNet/blob/main/docs/StereoSR.md).
### Installation
This implementation based on [BasicSR](https://github.com/xinntao/BasicSR) which is a open source toolbox for image/video restoration tasks and [HINet](https://github.com/megvii-model/HINet)```python
python 3.9.5
pytorch 1.11.0
cuda 11.3
``````
git clone https://github.com/megvii-research/NAFNet
cd NAFNet
pip install -r requirements.txt
python setup.py develop --no_cuda_ext
```### Quick Start
* Image Denoise Colab Demo: [](https://colab.research.google.com/drive/1dkO5AyktmBoWwxBwoKFUurIDn0m4qDXT?usp=sharing)
* Image Deblur Colab Demo: [](https://colab.research.google.com/drive/1yR2ClVuMefisH12d_srXMhHnHwwA1YmU?usp=sharing)
* Stereo Image Super-Resolution Colab Demo: [](https://colab.research.google.com/drive/1PkLog2imf7jCOPKq1G32SOISz0eLLJaO?usp=sharing)
* Single Image Inference Demo:
* Image Denoise:
```
python basicsr/demo.py -opt options/test/SIDD/NAFNet-width64.yml --input_path ./demo/noisy.png --output_path ./demo/denoise_img.png
```
* Image Deblur:
```
python basicsr/demo.py -opt options/test/REDS/NAFNet-width64.yml --input_path ./demo/blurry.jpg --output_path ./demo/deblur_img.png
```
* ```--input_path```: the path of the degraded image
* ```--output_path```: the path to save the predicted image
* [pretrained models](https://github.com/megvii-research/NAFNet/#results-and-pre-trained-models) should be downloaded.
* Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo for single image restoration[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/chuxiaojie/NAFNet)
* Stereo Image Inference Demo:
* Stereo Image Super-resolution:
```
python basicsr/demo_ssr.py -opt options/test/NAFSSR/NAFSSR-L_4x.yml \
--input_l_path ./demo/lr_img_l.png --input_r_path ./demo/lr_img_r.png \
--output_l_path ./demo/sr_img_l.png --output_r_path ./demo/sr_img_r.png
```
* ```--input_l_path```: the path of the degraded left image
* ```--input_r_path```: the path of the degraded right image
* ```--output_l_path```: the path to save the predicted left image
* ```--output_r_path```: the path to save the predicted right image
* [pretrained models](https://github.com/megvii-research/NAFNet/#results-and-pre-trained-models) should be downloaded.
* Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo for stereo image super-resolution[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/chuxiaojie/NAFSSR)
* Try the web demo with all three tasks here: [![Replicate](https://replicate.com/megvii-research/nafnet/badge)](https://replicate.com/megvii-research/nafnet)### Results and Pre-trained Models
| name | Dataset|PSNR|SSIM| pretrained models | configs |
|:----|:----|:----|:----|:----|-----|
|NAFNet-GoPro-width32|GoPro|32.8705|0.9606|[gdrive](https://drive.google.com/file/d/1Fr2QadtDCEXg6iwWX8OzeZLbHOx2t5Bj/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1AbgG0yoROHmrRQN7dgzDvQ?pwd=so6v)|[train](./options/train/GoPro/NAFNet-width32.yml) \| [test](./options/test/GoPro/NAFNet-width32.yml)|
|NAFNet-GoPro-width64|GoPro|33.7103|0.9668|[gdrive](https://drive.google.com/file/d/1S0PVRbyTakYY9a82kujgZLbMihfNBLfC/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1g-E1x6En-PbYXm94JfI1vg?pwd=wnwh)|[train](./options/train/GoPro/NAFNet-width64.yml) \| [test](./options/test/GoPro/NAFNet-width64.yml)|
|NAFNet-SIDD-width32|SIDD|39.9672|0.9599|[gdrive](https://drive.google.com/file/d/1lsByk21Xw-6aW7epCwOQxvm6HYCQZPHZ/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1Xses38SWl-7wuyuhaGNhaw?pwd=um97)|[train](./options/train/SIDD/NAFNet-width32.yml) \| [test](./options/test/SIDD/NAFNet-width32.yml)|
|NAFNet-SIDD-width64|SIDD|40.3045|0.9614|[gdrive](https://drive.google.com/file/d/14Fht1QQJ2gMlk4N1ERCRuElg8JfjrWWR/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/198kYyVSrY_xZF0jGv9U0sQ?pwd=dton)|[train](./options/train/SIDD/NAFNet-width64.yml) \| [test](./options/test/SIDD/NAFNet-width64.yml)|
|NAFNet-REDS-width64|REDS|29.0903|0.8671|[gdrive](https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1vg89ccbpIxg3mK9IONBfGg?pwd=9fas)|[train](./options/train/REDS/NAFNet-width64.yml) \| [test](./options/test/REDS/NAFNet-width64.yml)|
|NAFSSR-L_4x|Flickr1024|24.17|0.7589|[gdrive](https://drive.google.com/file/d/1TIdQhPtBrZb2wrBdAp9l8NHINLeExOwb/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1P8ioEuI1gwydA2Avr3nUvw?pwd=qs7a)|[train](./options/train/NAFSSR/NAFSSR-L_4x.yml) \| [test](./options/test/NAFSSR/NAFSSR-L_4x.yml)|
|NAFSSR-L_2x|Flickr1024|29.68|0.9221|[gdrive](https://drive.google.com/file/d/1SZ6bQVYTVS_AXedBEr-_mBCC-qGYHLmf/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1GS6YQSSECH8hAKhvzw6GyQ?pwd=2v3v)|[train](./options/train/NAFSSR/NAFSSR-L_2x.yml) \| [test](./options/test/NAFSSR/NAFSSR-L_2x.yml)|
|Baseline-GoPro-width32|GoPro|32.4799|0.9575|[gdrive](https://drive.google.com/file/d/14z7CxRzVkYEhFgsZg79GlPTEr3VFIGyl/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1WnFKYTAQyAQ9XuD5nlHw_Q?pwd=oieh)|[train](./options/train/GoPro/Baseline-width32.yml) \| [test](./options/test/GoPro/Baseline-width32.yml)|
|Baseline-GoPro-width64|GoPro|33.3960|0.9649|[gdrive](https://drive.google.com/file/d/1yy0oPNJjJxfaEmO0pfPW_TpeoCotYkuO/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1Fqi2T4nyF_wo4wh1QpgIGg?pwd=we36)|[train](./options/train/GoPro/Baseline-width64.yml) \| [test](./options/test/GoPro/Baseline-width64.yml)|
|Baseline-SIDD-width32|SIDD|39.8857|0.9596|[gdrive](https://drive.google.com/file/d/1NhqVcqkDcYvYgF_P4BOOfo9tuTcKDuhW/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1wkskmCRKhXq6dGa6Ns8D0A?pwd=0rin)|[train](./options/train/SIDD/Baseline-width32.yml) \| [test](./options/test/SIDD/Baseline-width32.yml)|
|Baseline-SIDD-width64|SIDD|40.2970|0.9617|[gdrive](https://drive.google.com/file/d/1wQ1HHHPhSp70_ledMBZhDhIGjZQs16wO/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1ivruGfSRGfWq5AEB8qc7YQ?pwd=t9w8)|[train](./options/train/SIDD/Baseline-width64.yml) \| [test](./options/test/SIDD/Baseline-width64.yml)|### Image Restoration Tasks
| Task | Dataset | Train/Test Instructions | Visualization Results |
| :----------------------------------- | :------ | :---------------------- | :----------------------------------------------------------- |
| Image Deblurring | GoPro | [link](./docs/GoPro.md) | [gdrive](https://drive.google.com/file/d/1S8u4TqQP6eHI81F9yoVR0be-DLh4cNgb/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1yNYQhznChafsbcfHO44aHQ?pwd=96ii)|
| Image Denoising | SIDD | [link](./docs/SIDD.md) | [gdrive](https://drive.google.com/file/d/1rbBYD64bfvbHOrN3HByNg0vz6gHQq7Np/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1wIubY6SeXRfZHpp6bAojqQ?pwd=hu4t)|
| Image Deblurring with JPEG artifacts | REDS | [link](./docs/REDS.md) | [gdrive](https://drive.google.com/file/d/1FwHWYPXdPtUkPqckpz-WBitpVyPuXFRi/view?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/17T30w5xAtBQQ2P3wawLiVA?pwd=put5) |
| Stereo Image Super-Resolution | Flickr1024+Middlebury | [link](./docs/StereoSR.md) | [gdrive](https://drive.google.com/drive/folders/1lTKe2TU7F-KcU-oaF8jqgoUwIMb6RW0w?usp=sharing) \| [百度网盘](https://pan.baidu.com/s/1kov6ivrSFy1FuToCATbyrA?pwd=q263 ) |### Citations
If NAFNet helps your research or work, please consider citing NAFNet.```
@article{chen2022simple,
title={Simple Baselines for Image Restoration},
author={Chen, Liangyu and Chu, Xiaojie and Zhang, Xiangyu and Sun, Jian},
journal={arXiv preprint arXiv:2204.04676},
year={2022}
}
```
If NAFSSR helps your research or work, please consider citing NAFSSR.
```
@InProceedings{chu2022nafssr,
author = {Chu, Xiaojie and Chen, Liangyu and Yu, Wenqing},
title = {NAFSSR: Stereo Image Super-Resolution Using NAFNet},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2022},
pages = {1239-1248}
}
```### Contact
If you have any questions, please contact [email protected] or [email protected]
---
statistics
![visitors](https://visitor-badge.glitch.me/badge?page_id=megvii-research/NAFNet)