Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/megyssstaa/lvq4j-example-iris

A simple demo of LVQ4J usage on the Iris Data Set
https://github.com/megyssstaa/lvq4j-example-iris

csv example examples iris iris-classification iris-dataset iris-recognition learning-vector-quantization lvq lvq4j machine-learning machinelearning neural-network neural-networks neuralnetwork neuralnetworks

Last synced: 1 day ago
JSON representation

A simple demo of LVQ4J usage on the Iris Data Set

Awesome Lists containing this project

README

        

# About
This repository demonstrates a simple example of the **[LVQ4J library](https://github.com/MeGysssTaa/lvq4j)** usage on the **[Iris Data Set](https://en.wikipedia.org/wiki/Iris_flower_data_set)**, which is, perhaps, the best known study case in the **[machine classification](https://en.wikipedia.org/wiki/Statistical_classification)** field.

# Building and running (Gradle)
**Step 1.** Download or clone this repository.
```bash
git clone https://github.com/MeGysssTaa/lvq4j-example-iris
```

**Step 2.** Build the example.
```bash
cd lvq4j-example-iris
./gradlew build
```

**Step 3.** [Download the Iris Data Set](https://archive.ics.uci.edu/ml/datasets/iris).

**Step 4.** Run the example:
```bash
java -jar build/libs/lvq4j-example-iris-1.0.0.jar
```

**Profit!** If you did everything correctly, the output you'll see will be similar to this:
```
lvq4j-example-iris $ java -jar build/libs/lvq4j-example-iris-1.0.0.jar /mnt/e/iris.csv
19:44:56.689 [main] INFO Main - Successfully read 150 Iris data records
19:44:56.709 [main] INFO Main - Neural network will be training asynchronously!
19:44:56.710 [Iris Train Thread] INFO LVQ4J - Normalized input in 0 millis with function me.darksidecode.lvq4j.NormalizationFunction$$Lambda$24/1209669119
19:44:56.711 [Iris Train Thread] INFO LVQ4J - Initialized weights in 0 millis with strategy me.darksidecode.lvq4j.WeightsInitializer$$Lambda$17/1884122755
19:44:56.711 [Iris Train Thread] INFO LVQ4J - Neural network will begin training from scratch.
19:44:56.753 [Iris Train Thread] INFO Train Finish Listener - The neural network has finished training!
19:44:56.754 [Iris Train Thread] INFO Train Finish Listener - ===============================================
19:44:56.755 [Iris Train Thread] INFO Train Finish Listener - SUMMARY
19:44:56.756 [Iris Train Thread] INFO Train Finish Listener - Overall accuracy: 98.0%
19:44:56.757 [Iris Train Thread] INFO Train Finish Listener - Accuracy per cluster (per Iris species):
19:44:56.757 [Iris Train Thread] INFO Train Finish Listener - 0: 100.0%
19:44:56.757 [Iris Train Thread] INFO Train Finish Listener - 1: 96.0%
19:44:56.757 [Iris Train Thread] INFO Train Finish Listener - 2: 98.0%
19:44:56.757 [Iris Train Thread] INFO Train Finish Listener - ===============================================
19:44:56.758 [Iris Train Thread] INFO LVQ4J - Training completed. It took 46 millis to run 188 iterations for a final error square
sum of 13.05253438308561
```

# Next steps
**See LVQ4J Wiki** and try playing with the code, and then write an own classifier that makes use of LVQ4J.

* If you have any questions or issues, **[don't hesitate to open an issue](https://github.com/MeGysssTaa/lvq4j-example-iris/issues)**!
* If you believe something isn't working as intended, and you know how to fix it, or if you have some ideas for improvements, **[please create a pull request](https://github.com/MeGysssTaa/lvq4j-example-iris/pulls)**.

# License
**[Apache License 2.0](https://github.com/MeGysssTaa/lvq4j/blob/master/LICENSE)**