https://github.com/mehrab-kalantari/book-price-prediction
Book price dataset analysis and modeling
https://github.com/mehrab-kalantari/book-price-prediction
bivariate-analysis eda feature-engineering feature-extraction feature-importance nlp one-hot-encoding ordinal-encoding outlier-detection random-forest-regressor scaling univariate-analysis
Last synced: 3 months ago
JSON representation
Book price dataset analysis and modeling
- Host: GitHub
- URL: https://github.com/mehrab-kalantari/book-price-prediction
- Owner: Mehrab-Kalantari
- Created: 2023-12-05T07:56:04.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-05T08:09:41.000Z (over 1 year ago)
- Last Synced: 2025-01-16T09:42:47.034Z (5 months ago)
- Topics: bivariate-analysis, eda, feature-engineering, feature-extraction, feature-importance, nlp, one-hot-encoding, ordinal-encoding, outlier-detection, random-forest-regressor, scaling, univariate-analysis
- Language: Jupyter Notebook
- Homepage:
- Size: 1.71 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Book Prices Prediction
## Contents
### Data Understanding
Understanding data and features
### Data Cleaning For EDA
* Renaming columns
* Categorical to numerical
* Feature expansion
* Feature extraction
* Null values handling### Exploratory Data Analysis
* Univariate Analysis
* Target analysis
* Numerical features
* Categorical features* Bivariate Analysis
* Year analysis
* Population analysis
* Price analysis### Data Preprocessing
* Target Log
* Encoding
* Ordinal
* One Hot
* Count Vectorizer* Discretization
* Normalization
* Scaling
* Standardization
* Outlier Detection### Modeling
Random forest regressor is used.### Evaluation
MSE for train and test datasets
* Train MSE
* * Test MSE
* ### Feature Importance
