An open API service indexing awesome lists of open source software.

https://github.com/mehrab-kalantari/credit-card-fraud-detection

Credit card transactions fraud detection using classic algorithms
https://github.com/mehrab-kalantari/credit-card-fraud-detection

association-analysis auc-roc-curve correlation-analysis credit-card-fraud-detection feature-engineering fraud-detection imbalanced-learning model-selection roc-curve smote-tomek

Last synced: about 2 months ago
JSON representation

Credit card transactions fraud detection using classic algorithms

Awesome Lists containing this project

README

        

# Credit Card Transactions Fraud Detection

[Dataset on kaggle](https://www.kaggle.com/datasets/kartik2112/fraud-detection)

## Contents
### Data Understanding
* Features
* Null values detection
* Duplicated values detection

### Data Cleaning For EDA
* Column removal
* Discretization
* Creating new features
* Feature extraction

### Feature Engineering
* Datetime feature extraction
* Credit card feature extraction

### Exploratory Data Analysis
* Univariate Analysis
* Target
* Categorical features
* Numerical features

* Bivariate Analysis
* Target analysis
* Amount of activity analysis
* Time analysis

### Correlation and Association Analysis
* Correlation matrix
* Association matrix

### Data Preprocessing
* Column removal
* Log transform
* Categorical encoding
* Binary encoding
* Weight of evidence encoding
* Ordinal encoding

* Train-test split

### Imbalanced Learning
Target is imbalanced
* ![p](sample/target.png)

Methods performed
* No changes
* Random under sampling
* Random over sampling
* SMOTE-Tomek links
* Class weights

### Feature Importance
![pp](sample/feature%20importance.png)

### Modeling
1. Random Forest Classifier
2. Logistic Regression Classifier
3. Naive Bayes
4. Decision Tree Classifier
5. Support Vector Machine (SVM) Classifier
6. K-nearest neighbor (KNN) Classifier

### Evaluation
* Confusion matrix
* AUC curve
* Classification metrics
* Decision boundary

Results on random forest classifier for test data
* ![p2](sample/conf.png)

* ![p3](sample/roc.png)

### Model Selection
Results on all models for test data
![all](sample/selection.png)