An open API service indexing awesome lists of open source software.

https://github.com/mehtadigisha/iris-flower-classification

Iris Flower Classification
https://github.com/mehtadigisha/iris-flower-classification

accuracy-score classification-report data-analysis data-visualization eda iris-classification machine-learning matplotlib pandas prediction python scikit-learn seaborn svc-model svm-model visualization

Last synced: 6 months ago
JSON representation

Iris Flower Classification

Awesome Lists containing this project

README

          

# ๐ŸŒธ Iris Flower Classification - Machine Learning Project

This project implements a **Supervised Machine Learning** model using **Support Vector Machine (SVM)** to classify iris flowers into three species: *Setosa*, *Versicolor*, and *Virginica*. The model is trained on the classic **Iris dataset**, and includes data visualization, model training, prediction, and evaluation.

---

## ๐Ÿš€ Features

- ๐Ÿ“Š Exploratory Data Analysis with **Seaborn** and **Matplotlib**
- ๐Ÿค– SVM (Support Vector Classification) for model building
- ๐Ÿงช Model evaluation using **Accuracy Score** and **Classification Report**
- ๐Ÿ”ฎ Predict the species of Iris flower based on input features
- โœ… Beginner-friendly and well-commented code

---

## ๐Ÿ“š Dataset

The **Iris dataset** contains 150 samples of iris flowers, with the following features:

- `Sepal Length`
- `Sepal Width`
- `Petal Length`
- `Petal Width`

Target classes:
- `Iris-setosa`
- `Iris-versicolor`
- `Iris-virginica`

---

## Libraries Used

- `numpy`
- `pandas`
- `matplotlib`
- `seaborn`
- `scikit-learn`

๐Ÿง  Model Training & Evaluation
The model is built using Support Vector Classifier (SVC) from sklearn.svm. It is evaluated using:

โœ… Accuracy Score

๐Ÿ“„ Classification Report (Precision, Recall, F1-score)

### ๐Ÿ’ก How to Use

1. Install the libraries using:

```bash
pip install numpy pandas matplotlib seaborn scikit-learn
```

2. Clone the repository:
``` bash
Copy
Edit
git clone https://github.com/mehtadigisha/Iris-Flower-Classification
```

3. Run the Jupyter Notebook:
``` bash
jupyter notebook iris_classification.ipynb
```

4. Follow the notebook cells to explore the data, train the model, and make predictions.