Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/meiqihu/ACDA
Pytorch code of "Hyperspectral Anomaly Change Detection Based on Auto-encoder"
https://github.com/meiqihu/ACDA
Last synced: 3 months ago
JSON representation
Pytorch code of "Hyperspectral Anomaly Change Detection Based on Auto-encoder"
- Host: GitHub
- URL: https://github.com/meiqihu/ACDA
- Owner: meiqihu
- License: gpl-3.0
- Created: 2022-04-27T07:33:04.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-05-05T03:35:10.000Z (over 1 year ago)
- Last Synced: 2024-07-23T04:35:54.954Z (4 months ago)
- Language: Python
- Size: 11.3 MB
- Stars: 43
- Watchers: 2
- Forks: 3
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-remote-sensing-change-detection - Hu M, Wu C, Zhang L, et al. Hyperspectral anomaly change detection based on autoencoder
README
# Hyperspectral anomaly change detection based on autoencoder
Pytorch implementation of JSTARS paper "Hyperspectral anomaly change detection based on autoencoder".
![image](https://github.com/meiqihu/ACDA/blob/main/Figure_ACDA.png)
# Paper
[Hyperspectral anomaly change detection based on autoencoder](https://ieeexplore.ieee.org/document/9380336)Please cite our paper if you find it useful for your research.
>@ARTICLE{9380336,
author={Hu, Meiqi and Wu, Chen and Zhang, Liangpei and Du, Bo},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
title={Hyperspectral Anomaly Change Detection Based on Autoencoder},
year={2021},
volume={14},
number={},
pages={3750-3762},
doi={10.1109/JSTARS.2021.3066508}}# Installation
Install Pytorch 1.10.2 with Python 3.6
# Dataset
Download the [dataset of Viareggio 2013]
链接:https://pan.baidu.com/s/1x_M0nRqV-jmugIB6MltmXQ
提取码:ogum[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning
>img_data.mat:
>>img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2)
>pretrain_samples:
>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.]
>groundtruth_samples:
>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
>random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
# Usage
maincode.py# More
🌷[Homepage](https://meiqihu.github.io/)🌷
🔴[Google web](https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ) 🔴
🌏[ResearchGate](https://www.researchgate.net/profile/Humeiqi-humeiqi) 🌍