An open API service indexing awesome lists of open source software.

https://github.com/meshpro/meshzoo

A collection of meshes for canonical domains
https://github.com/meshpro/meshzoo

mesh-generators python

Last synced: about 2 months ago
JSON representation

A collection of meshes for canonical domains

Awesome Lists containing this project

README

          


meshzoo

[![PyPi Version](https://img.shields.io/pypi/v/meshzoo.svg?style=flat-square)](https://pypi.org/project/meshzoo/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/meshzoo.svg?style=flat-square)](https://pypi.org/project/meshzoo/)
[![GitHub stars](https://img.shields.io/github/stars/nschloe/meshzoo.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/nschloe/meshzoo)
[![Downloads](https://pepy.tech/badge/meshzoo/month?style=flat-square)](https://pepy.tech/project/meshzoo)

[![Discord](https://img.shields.io/static/v1?logo=discord&logoColor=white&label=chat&message=on%20discord&color=7289da&style=flat-square)](https://discord.gg/PBCCvwHqpv)

When generating meshes for FEM/FVM computations, sometimes your geometry is so simple
that you don't need a complex mesh generator (like
[pygmsh](https://github.com/meshpro/pygmsh/),
[MeshPy](https://github.com/inducer/meshpy),
[mshr](https://bitbucket.org/fenics-project/mshr),
[pygalmesh](https://github.com/meshpro/pygalmesh/),
[dmsh](https://github.com/meshpro/dmsh/)),
but something simple and fast that makes use of the structure of the domain. Enter
meshzoo.

### Installation

Install meshzoo [from PyPI](https://pypi.org/project/meshzoo/) with

```
pip install meshzoo
```

### How to get a license

Licenses for personal and academic use can be purchased
[here](https://buy.stripe.com/5kA3eV8t8af83iE9AE).
You'll receive a confirmation email with a license key.
Install the key with

```
plm add
```

on your machine and you're good to go.

For commercial use, please contact support@mondaytech.com.

### Examples

#### Triangle

```python
import meshzoo

bary, cells = meshzoo.triangle(8)

# corners = np.array(
# [
# [0.0, -0.5 * numpy.sqrt(3.0), +0.5 * numpy.sqrt(3.0)],
# [1.0, -0.5, -0.5],
# ]
# )
# points = np.dot(corners, bary).T

# Process the mesh, e.g., write it to a file using meshio
# meshio.write_points_cells("triangle.vtk", points, {"triangle": cells})
```

#### Rectangle




```python
import meshzoo
import numpy as np

points, cells = meshzoo.rectangle_tri(
np.linspace(0.0, 1.0, 11),
np.linspace(0.0, 1.0, 11),
variant="zigzag", # or "up", "down", "center"
)

points, cells = meshzoo.rectangle_quad(
np.linspace(0.0, 1.0, 11),
np.linspace(0.0, 1.0, 11),
cell_type="quad4", # or "quad8", "quad9"
)
```

#### Regular polygon

| | | |
| :---------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: |
| `meshzoo.ngon(4, 8)` | `meshzoo.ngon(6, 8)` | `meshzoo.ngon(9, 8)` |

```python
import meshzoo

points, cells = meshzoo.ngon(5, 11)
```

#### Disk

| | | |
| :---------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: |
| `meshzoo.disk(4, 8)` | `meshzoo.disk(6, 8)` | `meshzoo.disk(9, 8)` |

The disk meshes are inflations of regular polygons.

```python
import meshzoo

points, cells = meshzoo.disk(6, 11)

points, cells = meshzoo.disk_quad(10, cell_type="quad4") # or "quad8", "quad9"
```

#### Möbius strip

```python
import meshzoo

points, cells = meshzoo.moebius(num_twists=1, nl=60, nw=11)
```

#### Sphere (surface)

| | |
| :--------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------: |

```python
import meshzoo

points, cells = meshzoo.uv_sphere(num_points_per_circle=20, num_circles=10, radius=1.0)
points, tri, quad = meshzoo.geo_sphere(
num_points_per_circle=20, num_circles=10, radius=1.0
)
```

Spheres can also be generated by refining the faces of [platonic
solids](https://en.wikipedia.org/wiki/Platonic_solid) and then "inflating" them. meshzoo
implements a few of them. The sphere generated from the icosahedron has the
highest-quality (most equilateral) triangles.

All cells are oriented such that its normals point outwards.

| | | |
| :-----------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: |
| `meshzoo.tetra_sphere(10)` | `meshzoo.octa_sphere(10)` | `meshzoo.icosa_sphere(10)` |

#### Ball (solid)

| | |
| :---------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: |

```python
import meshzoo

points, cells = meshzoo.ball_tetra(10)
points, cells = meshzoo.ball_hexa(10)
```

#### Tube

```python
import meshzoo

points, cells = meshzoo.tube(length=1.0, radius=1.0, n=30)
```

#### Cube

| | |
| :---------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: |

```python
import meshzoo
import numpy as np

points, cells = meshzoo.cube_tetra(
np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11)
)
points, cells = meshzoo.cube_hexa(
np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11)
)
```