Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/metaodi/swissparlpy

Wrapper for the Swiss Parliament API for Python
https://github.com/metaodi/swissparlpy

api api-wrapper parliament swiss swissparl

Last synced: 18 days ago
JSON representation

Wrapper for the Swiss Parliament API for Python

Awesome Lists containing this project

README

        

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code style: black][black-image]][black-url]
[![pre-commit][pre-commit-image]][pre-commit-url]

swissparlpy
===========

This module provides easy access to the data of the [OData webservice](https://ws.parlament.ch/odata.svc/) of the [Swiss parliament](https://www.parlament.ch/en).

## Table of Contents

* [Installation](#installation)
* [Usage](#usage)
* [Get tables and their variables](#get-tables-and-their-variables)
* [Get data of a table](#get-data-of-a-table)
* [Use together with `pandas`](#use-together-with-pandas)
* [Substrings](#substrings)
* [Date ranges](#date-ranges)
* [Advanced filter](#advanced-filter)
* [Large queries](#large-queries)
* [API documentation](#documentation)
* [Similar libraries for other languages](#similar-libraries-for-other-languages)
* [Credits](#credits)
* [Development](#development)
* [Release](#release)

## Installation

[swissparlpy is available on PyPI](https://pypi.org/project/swissparlpy/), so to install it simply use:

```
$ pip install swissparlpy
```

## Usage

See the [`examples` directory](/examples) for more scripts.

### Get tables and their variables

```python
>>> import swissparlpy as spp
>>> spp.get_tables()[:5] # get first 5 tables
['MemberParty', 'Party', 'Person', 'PersonAddress', 'PersonCommunication']
>>> spp.get_variables('Party') # get variables of table `Party`
['ID', 'Language', 'PartyNumber', 'PartyName', 'StartDate', 'EndDate', 'Modified', 'PartyAbbreviation']
```

### Get data of a table

```python
>>> import swissparlpy as spp
>>> data = spp.get_data('Canton', Language='DE')
>>> data

>>> data.count
26
>>> data[0]
{'ID': 2, 'Language': 'DE', 'CantonNumber': 2, 'CantonName': 'Bern', 'CantonAbbreviation': 'BE'}
>>> [d['CantonName'] for d in data]
['Bern', 'Neuenburg', 'Genf', 'Wallis', 'Uri', 'Schaffhausen', 'Jura', 'Basel-Stadt', 'St. Gallen', 'Obwalden', 'Appenzell A.-Rh.', 'Solothurn', 'Waadt', 'Zug', 'Aargau', 'Basel-Landschaft', 'Luzern', 'Thurgau', 'Freiburg', 'Appenzell I.-Rh.', 'Schwyz', 'Graubünden', 'Glarus', 'Tessin', 'Zürich', 'Nidwalden']
```

The return value of `get_data` is iterable, so you can easily loop over it. Or you can use indices to access elements, e.g. `data[1]` to get the second element, or `data[-1]` to get the last one.

Even [slicing](https://python-reference.readthedocs.io/en/latest/docs/brackets/slicing.html) is supported, so you can do things like only iterate over the first 5 elements using

```python
for rec in data[:5]:
print(rec)
```

### Use together with `pandas`

To create a pandas DataFrame from `get_data` simply pass the return value to the constructor:

```python
>>> import swissparlpy as spp
>>> import pandas as pd
>>> parties = spp.get_data('Party', Language='DE')
>>> parties_df = pd.DataFrame(parties)
>>> parties_df
ID Language PartyNumber ... EndDate Modified PartyAbbreviation
0 12 DE 12 ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00 SP
1 13 DE 13 ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00 SVP
2 14 DE 14 ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00 CVP
3 15 DE 15 ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00 FDP-Liberale
4 16 DE 16 ... 2000-01-01 00:00:00+00:00 2010-12-26 13:05:26.430000+00:00 LDP
.. ... ... ... ... ... ... ...
78 1582 DE 1582 ... 2000-01-01 00:00:00+00:00 2015-12-03 08:48:38.250000+00:00 BastA
79 1583 DE 1583 ... 2000-01-01 00:00:00+00:00 2019-03-07 17:24:15.013000+00:00 CVPO
80 1584 DE 1584 ... 2000-01-01 00:00:00+00:00 2019-11-08 17:28:43.947000+00:00 Al
81 1585 DE 1585 ... 2000-01-01 00:00:00+00:00 2019-11-08 17:41:39.513000+00:00 EàG
82 1586 DE 1586 ... 2000-01-01 00:00:00+00:00 2021-08-12 07:59:22.627000+00:00 M-E

[83 rows x 8 columns]
```

### Substrings

If you want to query for substrings there are two main operators to use:

**`__startswith`**:

```python
>>> import swissparlpy as spp
>>> persons = spp.get_data("Person", Language="DE", LastName__startswith='Bal')
>>> persons.count
12
```

**`__contains`**
```python
>>> import swissparlpy as spp
>>> co2_business = spp.get_data("Business", Title__contains="CO2", Language = "DE")
>>> co2_business.count
265
```

You can suffix any field with those operators to query the data.

### Date ranges

To query for date ranges you can use the operators...

* `__gt` (greater than)
* `__gte` (greater than or equal)
* `__lt` (less than)
* `__lte` (less than or equal)

...in combination with a `datetime` object.

```python
>>> import swissparlpy as spp
>>> from datetime import datetime
>>> business = spp.get_data(
... "Business",
... Language="DE",
... SubmissionDate__gt=datetime.fromisoformat('2019-09-30'),
... SubmissionDate__lte=datetime.fromisoformat('2019-10-31')
... )
>>> business.count
22
```

### Advanced filter

**Text query**

It's possible to write text queries using operators like `eq` (equals), `ne` (not equals), `lt`/`lte` (less than/less than or equals), `gt` / `gte` (greater than/greater than or equals), `startswith()` and `contains`:

```python
import swissparlpy as spp
import pandas as pd

persons = spp.get_data(
"Person",
filter="(startswith(FirstName, 'Ste') or LastName eq 'Seiler') and Language eq 'DE'"
)

df = pd.DataFrame(persons)
print(df[['FirstName', 'LastName']])
```

**Callable Filter**

You can provide a callable as a filter which allows for more advanced filters.

`swissparlpy.filter` provides `or_` and `and_`.

```python
import swissparlpy as spp
import pandas as pd

# filter by FirstName = 'Stefan' OR LastName == 'Seiler'
def filter_by_name(ent):
return spp.filter.or_(
ent.FirstName == 'Stefan',
ent.LastName == 'Seiler'
)

persons = spp.get_data("Person", filter=filter_by_name, Language='DE')

df = pd.DataFrame(persons)
print(df[['FirstName', 'LastName']])
```

### Large queries

Large queries (especially the tables Voting and Transcripts) may result in server-side errors (500 Internal Server Error). In these cases it is recommended to download the data in smaller batches, save the individual blocks and combine them after the download.

This is an [example script](/examples/download_votes_in_batches.py) to download all votes of the legislative period 50, session by session, and combine them afterwards in one `DataFrame`:

```python
import swissparlpy as spp
import pandas as pd
import os

__location__ = os.path.realpath(os.getcwd())
path = os.path.join(__location__, "voting50")

# download votes of one session and save as pickled DataFrame
def save_votes_of_session(id, path):
if not os.path.exists(path):
os.mkdir(path)
data = spp.get_data("Voting", Language="DE", IdSession=id)
print(f"{data.count} rows loaded.")
df = pd.DataFrame(data)
pickle_path = os.path.join(path, f'{id}.pks')
df.to_pickle(pickle_path)
print(f"Saved pickle at {pickle_path}")

# get all session of the 50 legislative period
sessions50 = spp.get_data("Session", Language="DE", LegislativePeriodNumber=50)
sessions50.count

for session in sessions50:
print(f"Loading session {session['ID']}")
save_votes_of_session(session['ID'], path)

# Combine to one dataframe
df_voting50 = pd.concat([pd.read_pickle(os.path.join(path, x)) for x in os.listdir(path)])
```

### Documentation

The referencing table has been created and is available [here](docs/swissparAPY_diagram.pdf). It contains the dependency diagram between all of the tables as well, some exhaustive descriptions as well as the code needed to generate such interactive documentation.
The documentation can indeed be recreated using [dbdiagram.io](https://dbdiagram.io/home).

Below is a first look of what the dependencies are between the tables contained in the API:

![db diagram of swiss parliament API](/docs/swissparAPY_diagram.png "db diagram of swiss parliament API")

### Similar libraries for other languages

* R: [zumbov2/swissparl](https://github.com/zumbov2/swissparl)
* JavaScript: [michaelschoenbaechler/swissparl](https://github.com/michaelschoenbaechler/swissparl)

## Credits

This library is inspired by the R package [swissparl](https://github.com/zumbov2/swissparl) of [David Zumbach](https://github.com/zumbov2).
[Ralph Straumann](https://twitter.com/rastrau) initial [asked about a Python version of `swissparl` on Twitter](https://twitter.com/rastrau/status/1441048778740432902), which led to this project.

## Development

To develop on this project, install `flit`:

```
pip install flit
flit install -s
```

## Release

To create a new release, follow these steps (please respect [Semantic Versioning](http://semver.org/)):

1. Adapt the version number in `swissparlpy/__init__.py`
1. Update the CHANGELOG with the version
1. Create a [pull request to merge `develop` into `main`](https://github.com/metaodi/swissparlpy/compare/main...develop?expand=1) (make sure the tests pass!)
1. Create a [new release/tag on GitHub](https://github.com/metaodi/swissparlpy/releases) (on the main branch)
1. The [publication on PyPI](https://pypi.python.org/pypi/swissparlpy) happens via [GitHub Actions](https://github.com/metaodi/swissparlpy/actions?query=workflow%3A%22Upload+Python+Package%22) on every tagged commit

[pypi-image]: https://img.shields.io/pypi/v/swissparlpy
[pypi-url]: https://pypi.org/project/swissparlpy/
[build-image]: https://github.com/metaodi/swissparlpy/actions/workflows/build.yml/badge.svg
[build-url]: https://github.com/metaodi/swissparlpy/actions/workflows/build.yml
[black-image]: https://img.shields.io/badge/code%20style-black-000000.svg
[black-url]: https://github.com/psf/black
[pre-commit-image]: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit
[pre-commit-url]: https://github.com/pre-commit/pre-commit