Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mgrub/phd_sensor_simulation
Implementation and Documentation of consensus network calibration simulations
https://github.com/mgrub/phd_sensor_simulation
Last synced: 10 days ago
JSON representation
Implementation and Documentation of consensus network calibration simulations
- Host: GitHub
- URL: https://github.com/mgrub/phd_sensor_simulation
- Owner: mgrub
- License: apache-2.0
- Created: 2023-07-31T08:34:22.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-07-31T09:27:02.000Z (over 1 year ago)
- Last Synced: 2023-07-31T11:30:28.297Z (over 1 year ago)
- Language: Python
- Size: 310 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Simulation environment to test, compare and evaluate multiple co-calibration methods
## Run a given scenario
A scenario can be configured and then multiple methods are applied to the same configuration.
```bash
python evaluation_runner.py experiments/scenario_A/
```## Visualize results of a scenario
Once run, the results can be visualized:
```bash
python visualization_runner.py experiments/scenario_A/
```
## Define a scenarioA scenario is defined inside a `config.json`, which stores information about the
- random state
- reference sensors
- device under test
- measurand
- sensor readings
- methods to be usedAll options can also be loaded from an existing (i.e. from a previous run, to achieve or manipulate a specific setting).
## Define a method
Available methods are defined in `method_args/.json`.
- class name (as used in the actual source `cocalibration_methods.py`)
- arguments to initialize the class