Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/michaelfeil/infinity
Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting a wide range of text-embedding models and frameworks.
https://github.com/michaelfeil/infinity
bert-embeddings llm text-embeddings
Last synced: 30 days ago
JSON representation
Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting a wide range of text-embedding models and frameworks.
- Host: GitHub
- URL: https://github.com/michaelfeil/infinity
- Owner: michaelfeil
- License: mit
- Created: 2023-10-11T17:53:38.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-28T00:11:08.000Z (3 months ago)
- Last Synced: 2024-08-03T09:10:34.555Z (3 months ago)
- Topics: bert-embeddings, llm, text-embeddings
- Language: Python
- Homepage: https://michaelfeil.github.io/infinity/
- Size: 9.37 MB
- Stars: 1,118
- Watchers: 17
- Forks: 79
- Open Issues: 28
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- Awesome-LLM-Productization - infinity - a high-throughput, low-latency REST API for serving vector embeddings, supporting a wide range of text-embedding models and frameworks (Python based, MIT); (Models and Tools / Embeddings)
- awesome-ccamel - michaelfeil/infinity - Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models, clip, clap and colpali (Python)
- awesome-llmops - Infinity - embeddings | ![GitHub Badge](https://img.shields.io/github/stars/michaelfeil/infinity.svg?style=flat-square) | (Serving / Large Model Serving)
- awesome-production-machine-learning - Infinity - Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip. (Deployment and Serving)
- Awesome-LLM - Infinity - Inference for text-embeddings in Python (LLM Deployment)
README
[![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url]
[![Issues][issues-shield]][issues-url]
[![MIT License][license-shield]][license-url]# Infinity βΎοΈ
[![codecov][codecov-shield]][codecov-url]
[![ci][ci-shield]][ci-url]
[![Downloads][pepa-shield]][pepa-url]
[![DOI](https://zenodo.org/badge/703686617.svg)](https://zenodo.org/doi/10.5281/zenodo.11406462)
![Docker pulls](https://img.shields.io/docker/pulls/michaelf34/infinity)Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip. Infinity is developed under [MIT License](https://github.com/michaelfeil/infinity/blob/main/LICENSE).
## Why Infinity
* **Deploy any model from HuggingFace**: deploy any embedding, reranking, clip and sentence-transformer model from [HuggingFace]( https://huggingface.co/models?other=text-embeddings-inference&sort=trending)
* **Fast inference backends**: The inference server is built on top of [torch](https://github.com/pytorch/pytorch), [optimum (ONNX/TensorRT)](https://huggingface.co/docs/optimum/index) and [CTranslate2](https://github.com/OpenNMT/CTranslate2), using FlashAttention to get the most out of your **NVIDIA CUDA**, **AMD ROCM**, **CPU**, **AWS INF2** or **APPLE MPS** accelerator. Infinity uses dynamic batching and tokenization dedicated in worker threads.
* **Multi-modal and multi-model**: Mix-and-match multiple models. Infinity orchestrates them.
* **Tested implementation**: Unit and end-to-end tested. Embeddings via infinity are correctly embedded. Lets API users create embeddings till infinity and beyond.
* **Easy to use**: Built on [FastAPI](https://fastapi.tiangolo.com/). Infinity CLI v2 allows launching of all arguments via Environment variable or argument. OpenAPI aligned to [OpenAI's API specs](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings). View the docs at [https:///michaelfeil.github.io/infinity](https:///michaelfeil.github.io/infinity) on how to get started.### Latest News π₯
- [2024/07] Inference deployment example via [Modal](./infra/modal/README.md) and a [free GPU deployment](https://infinity.modal.michaelfeil.eu/)
- [2024/06] Support for multi-modal: clip, text-classification & launch all arguments from env variables
- [2024/05] launch multiple models using the `v2` cli, including `--api-key`
- [2024/03] infinity supports experimental int8 (cpu/cuda) and fp8 (H100/MI300) support
- [2024/03] Docs are online: https://michaelfeil.github.io/infinity/latest/
- [2024/02] Community meetup at the [Run:AI Infra Club](https://discord.gg/7D4fbEgWjv)
- [2024/01] TensorRT / ONNX inference
- [2023/10] First release## Getting started
### Launch the cli via pip install
```bash
pip install infinity-emb[all]
```
After your pip install, with your venv active, you can run the CLI directly.```bash
infinity_emb v2 --model-id BAAI/bge-small-en-v1.5
```
Check the `v2 --help` command to get a description for all parameters.
```bash
infinity_emb v2 --help
```### Launch the CLI using a pre-built docker container (recommended)
Instead of installing the CLI via pip, you may also use docker to run `michaelf34/infinity`.
Make sure you mount your accelerator ( i.e. install `nvidia-docker` and activate with `--gpus all`).```bash
port=7997
model1=michaelfeil/bge-small-en-v1.5
model2=mixedbread-ai/mxbai-rerank-xsmall-v1
volume=$PWD/datadocker run -it --gpus all \
-v $volume:/app/.cache \
-p $port:$port \
michaelf34/infinity:latest \
v2 \
--model-id $model1 \
--model-id $model2 \
--port $port
```
The cache path at inside the docker container is set by the environment variable `HF_HOME`.### CLI demo
In this demo [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2), deployed at batch-size=2. After initialization, from a second terminal 3 requests (payload 1,1,and 5 sentences) are sent via cURL.
![](docs/demo_v0_0_1.gif)### Launch it via the Python API
Instead of the cli & RestAPI use infinity's interface via the Python API.
This gives you most flexibility. The Python API builds on `asyncio` with its `await/async` features, to allow concurrent processing of requests. Arguments of the CLI are also available via Python.```python
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEnginesentences = ["Embed this is sentence via Infinity.", "Paris is in France."]
array = AsyncEngineArray.from_args([
EngineArgs(model_name_or_path = "BAAI/bge-small-en-v1.5", engine="torch", embedding_dtype="float32", dtype="auto")
])async def embed_text(engine: AsyncEmbeddingEngine):
async with engine:
embeddings, usage = await engine.embed(sentences=sentences)
# or handle the async start / stop yourself.
await engine.astart()
embeddings, usage = await engine.embed(sentences=sentences)
await engine.astop()
asyncio.run(embed_text(array[0]))
```Example embedding models:
- Any trending embedding / reranking model is likely supported: https://huggingface.co/models?other=text-embeddings-inference&sort=trending
- [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
- [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1)
- [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5)
- [jinaai/jina-embeddings-v2-base-code](https://huggingface.co/jinaai/jina-embeddings-v2-base-code)
- [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct)### Reranking
Reranking gives you a score for similarity between a query and multiple documents.
Use it in conjunction with a VectorDB+Embeddings, or as standalone for small amount of documents.
Please select a model from huggingface that is a AutoModelForSequenceClassification with one class classification.```python
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEngine
query = "What is the python package infinity_emb?"
docs = ["This is a document not related to the python package infinity_emb, hence...",
"Paris is in France!",
"infinity_emb is a package for sentence embeddings and rerankings using transformer models in Python!"]
array = AsyncEmbeddingEngine.from_args(
[EngineArgs(model_name_or_path = "mixedbread-ai/mxbai-rerank-xsmall-v1", engine="torch")]
)async def rerank(engine: AsyncEmbeddingEngine):
async with engine:
ranking, usage = await engine.rerank(query=query, docs=docs)
print(list(zip(ranking, docs)))
# or handle the async start / stop yourself.
await engine.astart()
ranking, usage = await engine.rerank(query=query, docs=docs)
await engine.astop()asyncio.run(rerank(array[0]))
```When using the CLI, use this command to launch rerankers:
```bash
infinity_emb v2 --model-id mixedbread-ai/mxbai-rerank-xsmall-v1
```Example models:
- [mixedbread-ai/mxbai-rerank-xsmall-v1](https://huggingface.co/mixedbread-ai/mxbai-rerank-xsmall-v1)
- [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base)
- [jinaai/jina-reranker-v1-turbo-en](https://huggingface.co/jinaai/jina-reranker-v1-turbo-en)### CLIP models
CLIP models are able to encode images and text at the same time.
```python
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEnginesentences = ["This is awesome.", "I am bored."]
images = ["http://images.cocodataset.org/val2017/000000039769.jpg"]
engine_args = EngineArgs(
model_name_or_path = "wkcn/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M",
engine="torch"
)
array = AsyncEngineArray.from_args([engine_args])async def embed(engine: AsyncEmbeddingEngine):
await engine.astart()
embeddings, usage = await engine.embed(sentences=sentences)
embeddings_image, _ = await engine.image_embed(images=images)
await engine.astop()asyncio.run(embed(array["wkcn/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M"]))
```Example models:
- [wkcn/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M](https://huggingface.co/wkcn/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M)
- [jinaai/jina-clip-v1](https://huggingface.co/jinaai/jina-clip-v1) (requires `pip install timm`)
- Currently no support for pure vision models: nomic-ai/nomic-embed-vision-v1.5, ..### CLAP models
CLAP models are able to encode audio and text at the same time.
```python
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEngine
import requests
import soundfile as sf
import iosentences = ["This is awesome.", "I am bored."]
url = "https://bigsoundbank.com/UPLOAD/wav/2380.wav"
raw_bytes = requests.get(url, stream=True).contentaudios = [raw_bytes]
engine_args = EngineArgs(
model_name_or_path = "laion/clap-htsat-unfused",
dtype="float32",
engine="torch")
array = AsyncEngineArray.from_args([engine_args])async def embed(engine: AsyncEmbeddingEngine):
await engine.astart()
embeddings, usage = await engine.embed(sentences=sentences)
embedding_audios = await engine.audio_embed(audios=audios)
await engine.astop()asyncio.run(embed(array["laion/clap-htsat-unfused"]))
```* Note: The sampling rate of the audio data needs to match the model *
Example models:
- [Clap Models from LAION](https://huggingface.co/collections/laion/clap-contrastive-language-audio-pretraining-65415c0b18373b607262a490)### Text Classification
Use text classification with Infinity's `classify` feature, which allows for sentiment analysis, emotion detection, and more classification tasks.
```python
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEnginesentences = ["This is awesome.", "I am bored."]
engine_args = EngineArgs(
model_name_or_path = "SamLowe/roberta-base-go_emotions",
engine="torch", model_warmup=True)
array = AsyncEngineArray.from_args([engine_args])async def classifier():
async with engine:
predictions, usage = await engine.classify(sentences=sentences)
# or handle the async start / stop yourself.
await engine.astart()
predictions, usage = await engine.classify(sentences=sentences)
await engine.astop()
asyncio.run(classifier(array["SamLowe/roberta-base-go_emotions"]))
```Example models:
- [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert)
- [SamLowe/roberta-base-go_emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions)## Integrations:
- [Serverless deployments at Runpod](https://github.com/runpod-workers/worker-infinity-embedding)
- [Truefoundry Cognita](https://github.com/truefoundry/cognita)
- [Langchain example](https://github.com/langchain-ai/langchain)
- [imitater - A unified language model server built upon vllm and infinity.](https://github.com/the-seeds/imitater)
- [Dwarves Foundation: Deployment examples using Modal.com](https://github.com/dwarvesf/llm-hosting)
- [infiniflow/Ragflow](https://github.com/infiniflow/ragflow)
- [SAP Core AI](https://github.com/SAP-samples/btp-generative-ai-hub-use-cases/tree/main/10-byom-oss-llm-ai-core)
- [gpt_server - gpt_server is an open-source framework designed for production-level deployment of LLMs (Large Language Models) or Embeddings.](https://github.com/shell-nlp/gpt_server)## Launch FAQ:
What are embedding models?
Embedding models can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
And it also can be used in vector databases for LLMs.
The most known architecture are encoder-only transformers such as BERT, and most popular implementation include [SentenceTransformers](https://github.com/UKPLab/sentence-transformers/).What models are supported?
All models of the sentence transformers org are supported https://huggingface.co/sentence-transformers / sbert.net.
LLM's like LLAMA2-7B are not intended for deployment.With the command `--engine torch` the model must be compatible with https://github.com/UKPLab/sentence-transformers/ and AutoModel
With the command `--engine optimum`, there must be an onnx file. Models from https://huggingface.co/Xenova are recommended.
With the command `--engine ctranslate2`
- only `BERT` models are supported.
For the latest trends, you might want to check out one of the following models.
https://huggingface.co/spaces/mteb/leaderboard
Launching multiple models
Since infinity_emb>=0.0.34, you can use cli `v2` method to launch multiple models at the same time.
Checkout `infinity_emb v2 --help` for all args.
Using Langchain with Infinity
Infinity has a official integration into `pip install langchain>=0.342`.
You can find more documentation on that here:
https://python.langchain.com/docs/integrations/text_embedding/infinity```python
from langchain.embeddings.infinity import InfinityEmbeddings
from langchain.docstore.document import Document
documents = [Document(page_content="Hello world!", metadata={"source": "unknown"})]emb_model = InfinityEmbeddings(model="BAAI/bge-small", infinity_api_url="http://localhost:7997/v1")
print(emb_model.embed_documents([doc.page_content for doc in docs]))
```## Documentation
View the docs at [https:///michaelfeil.github.io/infinity](https://michaelfeil.github.io/infinity) on how to get started.
After startup, the Swagger Ui will be available under `{url}:{port}/docs`, in this case `http://localhost:7997/docs`. You can also find a interactive preview here: https://infinity.modal.michaelfeil.eu/docs (and https://michaelfeil-infinity.hf.space/docs)## Contribute and Develop
Install via Poetry 1.7.1 and Python3.11 on Ubuntu 22.04
```bash
cd libs/infinity_emb
poetry install --extras all --with test
```To pass the CI:
```bash
cd libs/infinity_emb
make format
make lint
poetry run pytest ./tests
```All contributions must be made in a way to be compatible with the MIT License of this repo.
### Citation
```
@software{feil_2023_11630143,
author = {Feil, Michael},
title = {Infinity - To Embeddings and Beyond},
month = oct,
year = 2023,
publisher = {Zenodo},
doi = {10.5281/zenodo.11630143},
url = {https://doi.org/10.5281/zenodo.11630143}
}
```[contributors-shield]: https://img.shields.io/github/contributors/michaelfeil/infinity.svg?style=for-the-badge
[contributors-url]: https://github.com/michaelfeil/infinity/graphs/contributors
[forks-shield]: https://img.shields.io/github/forks/michaelfeil/infinity.svg?style=for-the-badge
[forks-url]: https://github.com/michaelfeil/infinity/network/members
[stars-shield]: https://img.shields.io/github/stars/michaelfeil/infinity.svg?style=for-the-badge
[stars-url]: https://github.com/michaelfeil/infinity/stargazers
[issues-shield]: https://img.shields.io/github/issues/michaelfeil/infinity.svg?style=for-the-badge
[issues-url]: https://github.com/michaelfeil/infinity/issues
[license-shield]: https://img.shields.io/github/license/michaelfeil/infinity.svg?style=for-the-badge
[license-url]: https://github.com/michaelfeil/infinity/blob/master/LICENSE.txt
[pepa-shield]: https://static.pepy.tech/badge/infinity-emb
[pepa-url]: https://www.pepy.tech/projects/infinity-emb
[codecov-shield]: https://codecov.io/gh/michaelfeil/infinity/branch/main/graph/badge.svg?token=NMVQY5QOFQ
[codecov-url]: https://codecov.io/gh/michaelfeil/infinity/branch/main
[ci-shield]: https://github.com/michaelfeil/infinity/actions/workflows/ci.yaml/badge.svg
[ci-url]: https://github.com/michaelfeil/infinity/actions