Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/michedev/tensorguard

TensorGuard helps to guard against bad Tensor shapes in any tensor based library
https://github.com/michedev/tensorguard

deep-learning numpy pytorch tensorflow

Last synced: 12 days ago
JSON representation

TensorGuard helps to guard against bad Tensor shapes in any tensor based library

Awesome Lists containing this project

README

        

# Tensor Guard

[![PyPI version fury.io](https://badge.fury.io/py/tensorguard.svg)](https://pypi.python.org/pypi/tensorguard/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/tensorguard.svg)](https://pypi.python.org/pypi/tensorguard/)
[![PyPI download month](https://img.shields.io/pypi/dm/tensorguard.svg)](https://pypi.python.org/pypi/tensorguard/)
[![GitHub followers](https://img.shields.io/github/followers/Michedev.svg?style=social&label=Follow&maxAge=2592000)](https://github.com/Michedev?tab=followers)

TensorGuard helps to guard against bad Tensor shapes in any tensor based library (e.g. Numpy, Pytorch, Tensorflow) using an intuitive symbolic-based syntax

### Installation
`pip install tensorguard`

## Basic Usage

```python
import numpy as np # could be tensorflow or torch as well
import tensorguard as tg

# tensorguard = tg.TensorGuard() #could be done in a OOP fashion
img = np.ones([64, 32, 32, 3])
flat_img = np.ones([64, 1024])
labels = np.ones([64])

# check shape consistency
tg.guard(img, "B, H, W, C")
tg.guard(labels, "B, 1") # raises error because of rank mismatch
tg.guard(flat_img, "B, H*W*C") # raises error because 1024 != 32*32*3

# guard also returns the tensor, so it can be inlined
mean_img = tg.guard(np.mean(img, axis=0), "H, W, C")

# more readable reshapes
flat_img = tg.reshape(img, 'B, H*W*C')

# evaluate templates
assert tg.get_dims('H, W*C+1') == [32, 97]

```

## Shape Template Syntax
The shape template mini-DSL supports many different ways of specifying shapes:

* numbers: `"64, 32, 32, 3"`
* named dimensions: `"B, width, height2, channels"`
* wildcards: `"B, *, *, *"`
* ellipsis: `"B, ..., 3"`
* addition, subtraction, multiplication, division: `"B*N, W/2, H*(C+1)"`
* dynamic dimensions: `"?, H, W, C"` *(only matches `[None, H, W, C]`)*

### Original Repo link: https://github.com/Qwlouse/shapeguard