An open API service indexing awesome lists of open source software.

https://github.com/microprediction/embarrassingly

robust optimization
https://github.com/microprediction/embarrassingly

optimization optimization-algorithms robust-optimization robust-statistics

Last synced: 12 days ago
JSON representation

robust optimization

Awesome Lists containing this project

README

        

# embarrassingly

Embarrassingly obvious (in retrospect) ways to hack objective functions before you send them to optimization routines.
See [blog article](https://www.microprediction.com/blog/robust-optimization) for motivation and explanation

![](https://i.imgur.com/pvcS5AX.png)

### Install

pip install embarrassingly

### Example 1 : Parallel objective computation

See [optuna_parallel.py](https://github.com/microprediction/embarrassingly/blob/main/examples/optuna_parallel.py)

from embarrassingly.parallel import Parallel
import optuna

def pre_objective(worker, trial):
print('Hi this is worker ' + str(worker))
x = [trial.suggest_float('x' + str(i), 0, 1) for i in range(3)]
return x[0] + x[1] * x[2]

def test_optuna():
objective = Parallel(pre_objective, num_workers=7)
study = optuna.create_study()
study.optimize(objective, n_trials=15, n_jobs=7)

### Example 2 : Plateau finding

See [underpromoted_shgo.py](https://github.com/microprediction/embarrassingly/blob/main/examples/underpromoted_shgo.py)

from scipy.optimize import shgo
from embarrassingly.underpromoted import plateaudinous, Underpromoted2d

bounds = [(-1 ,1) ,(-1 ,1)]
f = plateaudinous
res1 = shgo(func=f, bounds=bounds, n=8, iters=4, options={'minimize_every_iter': True, 'ftol': 0.1})
print('Minimum at '+str(res1.x))

f_tilde = Underpromoted2d(f, bounds=bounds, radius=0.05)
res1 = shgo(func=f_tilde, bounds=bounds, n=8, iters=4, options={'minimize_every_iter': True, 'ftol': 0.1})
print('Landed at '+str(res1.x))

### Example 3 : Expensive functions

See [shy_shgo.py](https://github.com/microprediction/embarrassingly/blob/main/examples/shy_shgo.py)

def slow_and_pointless(x):
""" Example of a function with varying computation time """
r = np.linalg.norm(x)
quad = (0.5*0.5-r*r)/(0.5*0.5)
compute_time = max(0,0.5*quad+x[0])
time.sleep(compute_time)
return schwefel([1000*x[0],980*x[1]])[0]

# Save time by making it a "shy" objective function
bounds = [(-0.5, 0.5), (-0.5, 0.5)]
SAP = Shy(slow_and_pointless, bounds=bounds, t_unit=0.01, d_unit=0.3)
from scipy.optimize import minimize
res = scipy.optimize.shgo(func=SAP, bounds=bounds, n=8, iters=4, options={'minimize_every_iter': True, 'ftol': 0.1})