Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/microsoft/SoftTeacher
Semi-Supervised Learning, Object Detection, ICCV2021
https://github.com/microsoft/SoftTeacher
iccv2021 object-detection semi-supervised-learning
Last synced: 9 days ago
JSON representation
Semi-Supervised Learning, Object Detection, ICCV2021
- Host: GitHub
- URL: https://github.com/microsoft/SoftTeacher
- Owner: microsoft
- License: mit
- Created: 2021-08-06T12:49:06.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-06-09T18:02:12.000Z (5 months ago)
- Last Synced: 2024-08-06T20:08:01.596Z (3 months ago)
- Topics: iccv2021, object-detection, semi-supervised-learning
- Language: Python
- Homepage:
- Size: 561 KB
- Stars: 895
- Watchers: 25
- Forks: 122
- Open Issues: 106
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Security: SECURITY.md
Awesome Lists containing this project
- awesome-colab-project - Soft Teacher
- StarryDivineSky - microsoft/SoftTeacher
README
# End-to-End Semi-Supervised Object Detection with Soft Teacher
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/semi-supervised-object-detection-on-coco-1)](https://paperswithcode.com/sota/semi-supervised-object-detection-on-coco-1?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/semi-supervised-object-detection-on-coco-5)](https://paperswithcode.com/sota/semi-supervised-object-detection-on-coco-5?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/semi-supervised-object-detection-on-coco-10)](https://paperswithcode.com/sota/semi-supervised-object-detection-on-coco-10?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/semi-supervised-object-detection-on-coco-100)](https://paperswithcode.com/sota/semi-supervised-object-detection-on-coco-100?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/instance-segmentation-on-coco-minival)](https://paperswithcode.com/sota/instance-segmentation-on-coco-minival?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/instance-segmentation-on-coco)](https://paperswithcode.com/sota/instance-segmentation-on-coco?p=end-to-end-semi-supervised-object-detection)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/end-to-end-semi-supervised-object-detection/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=end-to-end-semi-supervised-object-detection)By [Mengde Xu*](https://scholar.google.com/citations?user=C04zJHEAAAAJ&hl=zh-CN), [Zheng Zhang*](https://github.com/stupidZZ), [Han Hu](https://github.com/ancientmooner), [Jianfeng Wang](https://github.com/amsword), [Lijuan Wang](https://www.microsoft.com/en-us/research/people/lijuanw/), [Fangyun Wei](https://scholar.google.com.tw/citations?user=-ncz2s8AAAAJ&hl=zh-TW), [Xiang Bai](http://cloud.eic.hust.edu.cn:8071/~xbai/), [Zicheng Liu](https://www.microsoft.com/en-us/research/people/zliu/).
![](./resources/pipeline.png)
This repo is the official implementation of ICCV2021 paper ["End-to-End Semi-Supervised Object Detection with Soft Teacher"](https://arxiv.org/abs/2106.09018).## Citation
```bib
@article{xu2021end,
title={End-to-End Semi-Supervised Object Detection with Soft Teacher},
author={Xu, Mengde and Zhang, Zheng and Hu, Han and Wang, Jianfeng and Wang, Lijuan and Wei, Fangyun and Bai, Xiang and Liu, Zicheng},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2021}
}
```## Main Results
### Partial Labeled Data
We followed STAC[1] to evaluate on 5 different data splits for each setting, and report the average performance of 5 splits. The results are shown in the following:
#### 1% labeled data
| Method | mAP| Model Weights |Config Files|
| ---- | -------| ----- |----|
| Baseline| 10.0 |-|[Config](configs/baseline/faster_rcnn_r50_caffe_fpn_coco_partial_180k.py)|
| Ours (thr=5e-2) | 21.62 |[Drive](https://drive.google.com/drive/folders/1QA8sAw49DJiMHF-Cr7q0j7KgKjlJyklV?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py)|
| Ours (thr=1e-3)|22.64| [Drive](https://drive.google.com/drive/folders/1QA8sAw49DJiMHF-Cr7q0j7KgKjlJyklV?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py)|#### 5% labeled data
| Method | mAP| Model Weights |Config Files|
| ---- | -------| ----- |----|
| Baseline| 20.92 |-|[Config](configs/baseline/faster_rcnn_r50_caffe_fpn_coco_partial_180k.py)|
| Ours (thr=5e-2) | 30.42 |[Drive](https://drive.google.com/drive/folders/1FBWj5SB888m0LU_XYUOK9QEgiubSbU-8?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py)|
| Ours (thr=1e-3)|31.7| [Drive](https://drive.google.com/drive/folders/1FBWj5SB888m0LU_XYUOK9QEgiubSbU-8?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py)|#### 10% labeled data
| Method | mAP| Model Weights |Config Files|
| ---- | -------| ----- |----|
| Baseline| 26.94 |-|[Config](configs/baseline/faster_rcnn_r50_caffe_fpn_coco_partial_180k.py)|
| Ours (thr=5e-2) | 33.78 |[Drive](https://drive.google.com/drive/folders/1WyAVpfnWxEgvxCLUesxzNB81fM_de9DI?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py)|
| Ours (thr=1e-3)|34.7| [Drive](https://drive.google.com/drive/folders/1WyAVpfnWxEgvxCLUesxzNB81fM_de9DI?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py)|### Full Labeled Data
#### Faster R-CNN (ResNet-50)
| Model | mAP| Model Weights |Config Files|
| ------ |--- | ----- |----|
| Baseline | 40.9 | - | [Config](configs/baseline/faster_rcnn_r50_caffe_fpn_coco_full_720k.py) |
| Ours (thr=5e-2) | 44.05 |[Drive](https://drive.google.com/file/d/1QSwAcU1dpmqVkJiXufW_QaQu-puOeblG/view?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py)|
| Ours (thr=1e-3) | 44.6 |[Drive](https://drive.google.com/file/d/1QSwAcU1dpmqVkJiXufW_QaQu-puOeblG/view?usp=sharing)|[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py)|
| Ours* (thr=5e-2) | 44.5 | - | [Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_1440k.py) |
| Ours* (thr=1e-3) | 44.9 | - | [Config](configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_1440k.py) |#### Faster R-CNN (ResNet-101)
| Model | mAP| Model Weights |Config Files|
| ------ |--- | ----- |----|
| Baseline | 43.8 | - | [Config](configs/baseline/faster_rcnn_r101_caffe_fpn_coco_full_720k.py) |
| Ours* (thr=5e-2) | 46.9 | [Drive](https://drive.google.com/file/d/1LCZpIKBt0ihnPmvvZolV-L94uIn-U7Sp/view?usp=sharing) |[Config](configs/soft_teacher/soft_teacher_faster_rcnn_r101_caffe_fpn_coco_full_1080k.py) |
| Ours* (thr=1e-3) | 47.6 | [Drive](https://drive.google.com/file/d/1LCZpIKBt0ihnPmvvZolV-L94uIn-U7Sp/view?usp=sharing) | [Config](configs/soft_teacher/soft_teacher_faster_rcnn_r101_caffe_fpn_coco_full_1080k.py) |### Notes
- Ours* means we use longer training schedule.
- `thr` indicates `model.test_cfg.rcnn.score_thr` in config files. This inference trick was first introduced by Instant-Teaching[2].
- All models are trained on 8*V100 GPUs## Usage
### Requirements
- `Ubuntu 16.04`
- `Anaconda3` with `python=3.6`
- `Pytorch=1.9.0`
- `mmdetection=2.16.0+fe46ffe`
- `mmcv=1.3.9`
- `wandb=0.10.31`#### Notes
- We use [wandb](https://wandb.ai/) for visualization, if you don't want to use it, just comment line `273-284` in `configs/soft_teacher/base.py`.
- The project should be compatible to the latest version of `mmdetection`. If you want to switch to the same version `mmdetection` as ours, run `cd thirdparty/mmdetection && git checkout v2.16.0`
### Installation
```
make install
```### Data Preparation
- Download the COCO dataset
- Execute the following command to generate data set splits:
```shell script
# YOUR_DATA should be a directory contains coco dataset.
# For eg.:
# YOUR_DATA/
# coco/
# train2017/
# val2017/
# unlabeled2017/
# annotations/
ln -s ${YOUR_DATA} data
bash tools/dataset/prepare_coco_data.sh conduct```
For concrete instructions of what should be downloaded, please refer to `tools/dataset/prepare_coco_data.sh` line [`11-24`](https://github.com/microsoft/SoftTeacher/blob/863d90a3aa98615be3d156e7d305a22c2a5075f5/tools/dataset/prepare_coco_data.sh#L11)
### Training
- To train model on the **partial labeled data** setting:
```shell script
# JOB_TYPE: 'baseline' or 'semi', decide which kind of job to run
# PERCENT_LABELED_DATA: 1, 5, 10. The ratio of labeled coco data in whole training dataset.
# GPU_NUM: number of gpus to run the job
for FOLD in 1 2 3 4 5;
do
bash tools/dist_train_partially.sh ${FOLD}
done
```
For example, we could run the following scripts to train our model on 10% labeled data with 8 GPUs:```shell script
for FOLD in 1 2 3 4 5;
do
bash tools/dist_train_partially.sh semi ${FOLD} 10 8
done
```- To train model on the **full labeled data** setting:
```shell script
bash tools/dist_train.sh
```
For example, to train ours `R50` model with 8 GPUs:
```shell script
bash tools/dist_train.sh configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py 8
```
- To train model on **new dataset**:The core idea is to convert a new dataset to coco format. Details about it can be found in the [adding new dataset](https://github.com/open-mmlab/mmdetection/blob/master/docs/tutorials/customize_dataset.md).
### Evaluation
```
bash tools/dist_test.sh --eval bbox --cfg-options model.test_cfg.rcnn.score_thr=
```
### Inference
To inference with trained model and visualize the detection results:```shell script
# [IMAGE_FILE_PATH]: the path of your image file in local file system
# [CONFIG_FILE]: the path of a confile file
# [CHECKPOINT_PATH]: the path of a trained model related to provided confilg file.
# [OUTPUT_PATH]: the directory to save detection result
python demo/image_demo.py [IMAGE_FILE_PATH] [CONFIG_FILE] [CHECKPOINT_PATH] --output [OUTPUT_PATH]
```
For example:
- Inference on single image with provided `R50` model:
```shell script
python demo/image_demo.py /tmp/tmp.png configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py work_dirs/downloaded.model --output work_dirs/
```After the program completes, a image with the same name as input will be saved to `work_dirs`
- Inference on many images with provided `R50` model:
```shell script
python demo/image_demo.py '/tmp/*.jpg' configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py work_dirs/downloaded.model --output work_dirs/
```[1] [A Simple Semi-Supervised Learning Framework for Object Detection](https://arxiv.org/pdf/2005.04757.pdf)
[2] [Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework](https://arxiv.org/pdf/2103.11402.pdf)