Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/microsoft/augmented-interpretable-models
Interpretable and efficient predictors using pre-trained language models. Scikit-learn compatible.
https://github.com/microsoft/augmented-interpretable-models
ai artificial-intelligence deep-learning distillation embedding explainability huggingface interpretability language-model large-language-models linear linear-models logistic-regression machine-learning ml neural-network scikit-learn sentiment-classification transformer transparent
Last synced: 4 months ago
JSON representation
Interpretable and efficient predictors using pre-trained language models. Scikit-learn compatible.
- Host: GitHub
- URL: https://github.com/microsoft/augmented-interpretable-models
- Owner: microsoft
- License: mit
- Created: 2022-06-20T06:24:13.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-04-19T21:13:41.000Z (9 months ago)
- Last Synced: 2024-09-26T11:06:04.601Z (4 months ago)
- Topics: ai, artificial-intelligence, deep-learning, distillation, embedding, explainability, huggingface, interpretability, language-model, large-language-models, linear, linear-models, logistic-regression, machine-learning, ml, neural-network, scikit-learn, sentiment-classification, transformer, transparent
- Language: Jupyter Notebook
- Homepage: https://www.nature.com/articles/s41467-023-43713-1
- Size: 189 MB
- Stars: 37
- Watchers: 7
- Forks: 11
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
- License: LICENSE
- Security: SECURITY.md