https://github.com/microsoft/recommenders
Best Practices on Recommendation Systems
https://github.com/microsoft/recommenders
artificial-intelligence azure data-science deep-learning jupyter-notebook kubernetes machine-learning microsoft operationalization python ranking rating recommendation recommendation-algorithm recommendation-engine recommendation-system recommender tutorial
Last synced: 9 months ago
JSON representation
Best Practices on Recommendation Systems
- Host: GitHub
- URL: https://github.com/microsoft/recommenders
- Owner: recommenders-team
- License: mit
- Created: 2018-09-19T10:06:07.000Z (about 7 years ago)
- Default Branch: main
- Last Pushed: 2024-04-11T10:30:03.000Z (over 1 year ago)
- Last Synced: 2024-04-15T12:02:12.547Z (over 1 year ago)
- Topics: artificial-intelligence, azure, data-science, deep-learning, jupyter-notebook, kubernetes, machine-learning, microsoft, operationalization, python, ranking, rating, recommendation, recommendation-algorithm, recommendation-engine, recommendation-system, recommender, tutorial
- Language: Python
- Homepage: https://recommenders-team.github.io/recommenders/intro.html
- Size: 210 MB
- Stars: 17,902
- Watchers: 271
- Forks: 2,986
- Open Issues: 168
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Codeowners: .github/CODEOWNERS
- Security: SECURITY.md
- Authors: AUTHORS.md
Awesome Lists containing this project
- Awesome-Azure-Advanced-Analytics - Microsoft Recommender Git repo - Best Practices on Recommendation Systems. (AI + Machine Learning / AI Apps and Agents)
- awesome-embeddings - Microsoft Recommenders
- awesome-machine-learning-engineer - Microsoft Recommenders - A comparison of recommender system models (30 min) (Machine Learning / Recommender Systems)
- awesome-arsenal - Recommenders - 推荐系统的最佳实践。 (科技公司 / Microsoft)
- awesome-RecSys - recommenders
- awesome-list - Recommenders - Best Practices on Recommendation Systems. (Recommendation, Advertisement & Ranking / Others)
- awesome-marketing-machine-learning - recommenders
- awesome-python-machine-learning-resources - GitHub - 20% open · ⏱️ 20.07.2022): (推荐系统)
- awesome-starts - microsoft/recommenders - Best Practices on Recommendation Systems (Python)
- awesome-gradient-boosting-papers - [Code
- awesome-gradient-boosting-papers - [Code
- awesome-python-data-science - recommenders - Examples and best practices for building recommendation systems (Feature Extraction / Ranking/Recommender)