Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/midas-research/sthan-sr-aaai
https://github.com/midas-research/sthan-sr-aaai
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/midas-research/sthan-sr-aaai
- Owner: midas-research
- Created: 2021-01-17T12:47:27.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-06-08T13:05:38.000Z (over 3 years ago)
- Last Synced: 2024-09-29T14:31:38.862Z (4 months ago)
- Language: Python
- Size: 23.4 KB
- Stars: 98
- Watchers: 9
- Forks: 32
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- StarryDivineSky - midas-research/sthan-sr-aaai
README
# Stock Selection via Spatiotemporal Hypergraph Attention Network: A Learning to Rank Approach
This codebase contains the python scripts for STHAN-SR, the model for the AAAI 2021 paper [link](https://ojs.aaai.org/index.php/AAAI/article/view/16127).
## Environment & Installation Steps
Python 3.6, Pytorch, Pytorch-Geometric and networkx.```python
pip install -r requirements.txt
```## Dataset and Preprocessing
Download the dataset and follow preprocessing steps from [here](https://github.com/fulifeng/Temporal_Relational_Stock_Ranking).
## Run
Execute the following python command to train STHAN-SR:
```python
python train_nyse.py -m NYSE -l 16 -u 64 -a 1 -e NYSE_rank_lstm_seq-8_unit-32_0.csv.npy
python train_tse.py
python train_nasdaq.py -l 16 -u 64 -a 0.1
```## Cite
Consider citing our work if you use our codebase```c
@inproceedings{sawhney2021stock,
title={Stock Selection via Spatiotemporal Hypergraph Attention Network: A Learning to Rank Approach},
author={Sawhney, Ramit and Agarwal, Shivam and Wadhwa, Arnav and Derr, Tyler and Shah, Rajiv Ratn},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={35},
number={1},
pages={497--504},
year={2021}
}
```