Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/miftahurrrizki/sentiment-analyzer
https://github.com/miftahurrrizki/sentiment-analyzer
sentiment-analysis twitter-sentiment-analysis
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/miftahurrrizki/sentiment-analyzer
- Owner: miftahurrrizki
- License: mit
- Created: 2024-06-07T22:10:53.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-06-22T17:55:56.000Z (7 months ago)
- Last Synced: 2024-06-23T16:18:37.882Z (6 months ago)
- Topics: sentiment-analysis, twitter-sentiment-analysis
- Language: CSS
- Homepage: https://sentiment-analyzer-tweet.vercel.app
- Size: 1.37 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Tweet Sentiment Analyzer
Tweet Sentiment Analyzer is a web application designed to analyze the sentiment of tweets using machine learning technology. The project encompasses tweet data collection, data cleaning, machine learning model building, API creation, and user interface development.
## Technologies Used
- **Backend:**
- Python
- FastAPI
- Scikit-learn
- Pandas
- Docker
- Azure ML Studio- **Frontend:**
- HTML
- CSS
- JavaScript- **Deployment:**
- API: Azure
- Website: Vercel## Features
- Cleans and preprocesses tweet data
- Builds machine learning models using Bernoulli Naive Bayes and Logistic Regression
- Provides an API for tweet sentiment prediction
- User interface for inputting tweets and displaying sentiment analysis results in real-time## Usage
Before using this application, you need to activate CORS Anywhere on Heroku.
1. Visit the CORS Anywhere website: [CORS Anywhere Heroku](https://cors-anywhere.herokuapp.com/)
2. Press the "Request temporary access" button.After completing the above steps, you can use the application:
1. **Access the Web Application:**
Open the deployed web application in your browser: [Tweet Sentiment Analyzer](https://sentiment-analyzer-tweet.vercel.app)2. **Input Tweets:**
Enter the tweet you want to analyze in the provided input field.3. **View Sentiment Analysis:**
Submit the tweet to receive and view the sentiment analysis results in real-time.## Contribution
Contributions are welcome! Please fork this repository and submit a pull request with your proposed changes.
## License
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.