Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mikelove/bioc-refcard
Bioconductor cheat sheet
https://github.com/mikelove/bioc-refcard
bioconductor bioinformatics cheatsheet compbio guide howto microarray r rnaseq
Last synced: 4 days ago
JSON representation
Bioconductor cheat sheet
- Host: GitHub
- URL: https://github.com/mikelove/bioc-refcard
- Owner: mikelove
- Created: 2012-12-03T13:21:13.000Z (almost 12 years ago)
- Default Branch: main
- Last Pushed: 2024-08-26T13:25:30.000Z (2 months ago)
- Last Synced: 2024-10-13T23:36:27.074Z (23 days ago)
- Topics: bioconductor, bioinformatics, cheatsheet, compbio, guide, howto, microarray, r, rnaseq
- Language: HTML
- Homepage: http://mikelove.github.io/bioc-refcard/
- Size: 376 KB
- Stars: 187
- Watchers: 19
- Forks: 66
- Open Issues: 2
-
Metadata Files:
- Readme: README.html
Awesome Lists containing this project
README
Bioconductor cheat sheet
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
Bioconductor cheat sheet
Install
For details go to http://bioconductor.org/install/
if (!requireNamespace("BiocManager"))
install.packages("BiocManager")
BiocManager::install()
BiocManager::install(c("package1","package2")
BiocManager::valid() # are packages up to date?# what Bioc version is release right now?
http://bioconductor.org/bioc-version
# what Bioc versions are release/devel?
http://bioconductor.org/js/versions.jshelp within R
Simple help:
?functionName
?"eSet-class" # classes need the '-class' on the end
help(package="foo",help_type="html") # launch web browser help
vignette("topic")
browseVignettes(package="package") # show vignettes for the packageHelp for advanced users:
functionName # prints source code
getMethod(method,"class") # prints source code for method
selectMethod(method, "class") # will climb the inheritance to find method
showMethods(classes="class") # show all methods for class
methods(class="GRanges") # this will work in R >= 3.2
?"functionName,class-method" # method help for S4 objects, e.g.:
?"plotMA,data.frame-method" # from library(geneplotter)
?"method.class" # method help for S3 objects e.g.:
?"plot.lm"
sessionInfo() # necessary info for getting help
packageVersion("foo") # what version of packageBioconductor support website: https://support.bioconductor.org
If you use RStudio, then you already get nicely rendered documentation using
?
orhelp
. If you are a command line person, then you can use this alias to pop up a help page in your web browser withrhelp functionName packageName
.alias rhelp="Rscript -e 'args <- commandArgs(TRUE); help(args[2], package=args[3], help_type=\"html\"); Sys.sleep(5)' --args"
debugging R
traceback() # what steps lead to an error
# debug a function
debug(myFunction) # step line-by-line through the code in a function
undebug(myFunction) # stop debugging
debugonce(myFunction) # same as above, but doesn't need undebug()
# also useful if you are writing code is to put
# the function browser() inside a function at a critical point
# this plus devtools::load_all() can be useful for programming
# to jump in function on error:
options(error=recover)
# turn that behavior off:
options(error=NULL)
# debug, e.g. estimateSizeFactors from DESeq2...
# debugging an S4 method is more difficult; this gives you a peek inside:
trace(estimateSizeFactors, browser, exit=browser, signature="DESeqDataSet")Show package-specific methods for a class
These two long strings of R code do approximately the same thing: obtain the methods that operate on an object of a given class, which are defined in a specific package.
intersect(sapply(strsplit(as.character(methods(class="DESeqDataSet")), ","), `[`, 1), ls("package:DESeq2"))
sub("Function: (.*) \\(package .*\\)","\\1",grep("Function",showMethods(classes="DESeqDataSet", where=getNamespace("DESeq2"), printTo=FALSE), value=TRUE))Annotations
For AnnotationHub examples, see:
https://www.bioconductor.org/help/workflows/annotation/Annotation_Resources
The following is how to work with the organism database packages, and biomart.
# using one of the annotation packges
library(AnnotationDbi)
library(org.Hs.eg.db) # or, e.g. Homo.sapiens
columns(org.Hs.eg.db)
keytypes(org.Hs.eg.db)
head(keys(org.Hs.eg.db, keytype="ENTREZID"))
# returns a named character vector, see ?mapIds for multiVals options
res <- mapIds(org.Hs.eg.db, keys=k, column="ENSEMBL", keytype="ENTREZID")# generates warning for 1:many mappings
res <- select(org.Hs.eg.db, keys=k,
columns=c("ENTREZID","ENSEMBL","SYMBOL"),
keytype="ENTREZID")
# map from one annotation to another using biomart
library(biomaRt)
m <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")
map <- getBM(mart = m,
attributes = c("ensembl_gene_id", "entrezgene"),
filters = "ensembl_gene_id",
values = some.ensembl.genes)Genomic ranges
library(GenomicRanges)
z <- GRanges("chr1",IRanges(1000001,1001000),strand="+")
start(z)
end(z)
width(z)
strand(z)
mcols(z) # the 'metadata columns', any information stored alongside each range
ranges(z) # gives the IRanges
seqnames(z) # the chromosomes for each ranges
seqlevels(z) # the possible chromosomes
seqlengths(z) # the lengths for each chromosomeIntra-range methods
Affects ranges independently
function
descriptionshift
moves left/rightnarrow
narrows by relative position within rangeresize
resizes to width, fixing start for +, end for -flank
returns flanking ranges to the left +, or right -promoters
similar to flankrestrict
restricts ranges to a start and end positiontrim
trims out of bound ranges+/-
expands/contracts by adding/subtracting fixed amount*
zooms in (positive) or out (negative) by multiplesInter-range methods
Affects ranges as a group
function
descriptionrange
one range, leftmost start to rightmost endreduce
cover all positions with only one rangegaps
uncovered positions within rangedisjoin
breaks into discrete ranges based on original starts/endsNearest methods
Given two sets of ranges,
x
andsubject
, for each range inx
, returns…function
descriptionnearest
index of the nearest neighbor range in subjectprecede
index of the range in subject that is directly preceded by the range in xfollow
index of the range in subject that is directly followed by the range in xdistanceToNearest
distances to its nearest neighbor in subject (Hits object)distance
distances to nearest neighbor (integer vector)A Hits object can be accessed with
queryHits
,subjectHits
andmcols
if a distance is associated.set methods
If
y
is a GRangesList, then usepunion
, etc. All functions have defaultignore.strand=FALSE
, so are strand specific.union(x,y)
intersect(x,y)
setdiff(x,y)Overlaps
x %over% y # logical vector of which x overlaps any in y
fo <- findOverlaps(x,y) # returns a Hits object
queryHits(fo) # which in x
subjectHits(fo) # which in ySeqnames and seqlevels
GenomicRanges and GenomeInfoDb
gr.sub <- gr[seqlevels(gr) == "chr1"]
seqlevelsStyle(x) <- "UCSC" # convert to 'chr1' style from "NCBI" style '1'Sequences
see the Biostrings Quick Overview PDF
For naming, see cheat sheet for annotation
library(BSgenome.Hsapiens.UCSC.hg19)
dnastringset <- getSeq(Hsapiens, granges) # returns a DNAStringSet
# also Views() for Bioconductor >= 3.1library(Biostrings)
dnastringset <- readDNAStringSet("transcripts.fa")substr(dnastringset, 1, 10) # to character string
subseq(dnastringset, 1, 10) # returns DNAStringSet
Views(dnastringset, 1, 10) # lightweight views into object
complement(dnastringset)
reverseComplement(dnastringset)
matchPattern("ACGTT", dnastring) # also countPattern, also works on Hsapiens/genome
vmatchPattern("ACGTT", dnastringset) # also vcountPattern
letterFrequecy(dnastringset, "CG") # how many C's or G's
# also letterFrequencyInSlidingView
alphabetFrequency(dnastringset, as.prob=TRUE)
# also oligonucleotideFrequency, dinucleotideFrequency, trinucleotideFrequency
# transcribe/translate for imitating biological processesSequencing data
Rsamtools
scanBam
returns lists of raw values from BAM fileslibrary(Rsamtools)
which <- GRanges("chr1",IRanges(1000001,1001000))
what <- c("rname","strand","pos","qwidth","seq")
param <- ScanBamParam(which=which, what=what)
# for more BamFile functions/details see ?BamFile
# yieldSize for chunk-wise access
bamfile <- BamFile("/path/to/file.bam")
reads <- scanBam(bamfile, param=param)
res <- countBam(bamfile, param=param)
# for more sophisticated counting modes
# see summarizeOverlaps() below# quickly check chromosome names
seqinfo(BamFile("/path/to/file.bam"))# DNAStringSet is defined in the Biostrings package
# see the Biostrings Quick Overview PDF
dnastringset <- scanFa(fastaFile, param=granges)GenomicAlignments returns Bioconductor objects (GRanges-based)
library(GenomicAlignments)
ga <- readGAlignments(bamfile) # single-end
ga <- readGAlignmentPairs(bamfile) # paired-endTranscript databases
# get a transcript database, which stores exon, trancript, and gene information
library(GenomicFeatures)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene# or build a txdb from GTF file (e.g. downloadable from Ensembl FTP site)
txdb <- makeTranscriptDbFromGFF("file.GTF", format="gtf")# or build a txdb from Biomart (however, not as easy to reproduce later)
txdb <- makeTranscriptDbFromBiomart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")# in Bioconductor >= 3.1, also makeTxDbFromGRanges
# saving and loading
saveDb(txdb, file="txdb.sqlite")
loadDb("txdb.sqlite")# extracting information from txdb
g <- genes(txdb) # GRanges, just start to end, no exon/intron information
tx <- transcripts(txdb) # GRanges, similar to genes()
e <- exons(txdb) # GRanges for each exon
ebg <- exonsBy(txdb, by="gene") # exons grouped in a GRangesList by gene
ebt <- exonsBy(txdb, by="tx") # similar but by transcript# then get the transcript sequence
txSeq <- extractTranscriptSeqs(Hsapiens, ebt)Summarizing information across ranges and experiments
The SummarizedExperiment is a storage class for high-dimensional information tied to the same GRanges or GRangesList across experiments (e.g., read counts in exons for each gene).
library(GenomicAlignments)
fls <- list.files(pattern="*.bam$")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
ebg <- exonsBy(txdb, by="gene")
# see yieldSize argument for restricting memory
bf <- BamFileList(fls)
library(BiocParallel)
register(MulticoreParam(4))
# lots of options in the man page
# singleEnd, ignore.strand, inter.features, fragments, etc.
se <- summarizeOverlaps(ebg, bf)# operations on SummarizedExperiment
assay(se) # the counts from summarizeOverlaps
colData(se)
rowRanges(se)My preferred quantification method is Salmon, with
--gcBias
option enabled unless you know there is no GC dependence in the data, followed by tximport. Here is an example of usage:coldata <- read.table("samples.txt")
rownames(coldata) <- coldata$id
files <- coldata$files; names(files) <- coldata$id
txi <- tximport(files, type="salmon", tx2gene=tx2gene)
dds <- DESeqDataSetFromTximport(txi, coldata, ~condition)Another fast Bioconductor read counting method is featureCounts in Rsubread.
library(Rsubread)
res <- featureCounts(files, annot.ext="annotation.gtf",
isGTFAnnotationFile=TRUE,
GTF.featureType="exon",
GTF.attrType="gene_id")
res$countsRNA-seq gene-wise analysis
My preferred pipeline for DESeq2 users is to start with a lightweight transcript abundance quantifier such as Salmon and to use tximport, followed by
DESeqDataSetFromTximport
.Here,
coldata
is a data.frame withgroup
as a column.library(DESeq2)
# from tximport
dds <- DESeqDataSetFromTximport(txi, coldata, ~ group)
# from SummarizedExperiment
dds <- DESeqDataSet(se, ~ group)
# from count matrix
dds <- DESeqDataSetFromMatrix(counts, coldata, ~ group)
# minimal filtering helps keep things fast
# one can set 'n' to e.g. min(5, smallest group sample size)
keep <- rowSums(counts(dds) >= 10) >= n
dds <- dds[keep,]
dds <- DESeq(dds)
res <- results(dds) # no shrinkage of LFC, or:
res <- lfcShrink(dds, coef = 2, type="apeglm") # shrink LFCs
# this chunk from the Quick start in the edgeR User Guide
library(edgeR)
y <- DGEList(counts=counts,group=group)
keep <- filterByExpr(y)
y <- y[keep,]
y <- calcNormFactors(y)
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fit <- glmFit(y,design)
lrt <- glmLRT(fit)
topTags(lrt)
# or use the QL methods:
qlfit <- glmQLFit(y,design)
qlft <- glmQLFTest(qlfit)
topTags(qlft)
library(limma)
design <- model.matrix(~ group)
y <- DGEList(counts)
keep <- filterByExpr(y)
y <- y[keep,]
y <- calcNormFactors(y)
v <- voom(y,design)
fit <- lmFit(v,design)
fit <- eBayes(fit)
topTable(fit)
Expression set
library(Biobase)
data(sample.ExpressionSet)
e <- sample.ExpressionSet
exprs(e)
pData(e)
fData(e)Get GEO dataset
library(GEOquery)
e <- getGEO("GSE9514")Microarray analysis
library(affy)
library(limma)
phenoData <- read.AnnotatedDataFrame("sample-description.csv")
eset <- justRMA("/celfile-directory", phenoData=phenoData)
design <- model.matrix(~ Disease, pData(eset))
fit <- lmFit(eset, design)
efit <- eBayes(fit)
topTable(efit, coef=2)iCOBRA performance metrics
library(iCOBRA)
cd <- COBRAData(pval=pval.df, padj=padj.df, score=score.df, truth=truth.df)
cp <- calculate_performance(cd, binary_truth = "status", cont_truth = "logFC")
cobraplot <- prepare_data_for_plot(cp)
plot_fdrtprcurve(cobraplot)
# interactive shiny app:
COBRAapp(cd)window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});